A Review on Salivary Proteomics for Oral Cancer Screening

Qian Li¹², Xiangying Ouyang², Jiao Chen¹, Ping Zhang¹# and Yun Feng¹#

¹State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
²Department of Periodontology, School and Hospital of Stomatology, Peking University, Beijing, China.

Corresponding authors:
pingzhang68@hotmail.com, 953463551@qq.com

DOI: https://doi.org/10.21775/cimb.037.037.047

Abstract
Oral cancer has emerged as a global health problem due to its relatively high incidence and mortality. Human saliva as a diagnostic fluid can offer an easy, inexpensive, safe and non-invasive approach for disease detection. Direct contact between saliva and oral cancer lesions make detection of salivary biomarkers for oral cancer especially attractive. Proteins are important molecules involved in pathological processes of oral cancer growth, apoptosis and metastasis. Proteins such as hormones, antibodies, enzymes and cytokines in saliva secreted by oral cancer cells or by host immune cells can enter the saliva directly and provide relative information of oral cancer (Loo et al., 2010; Kaczor-Urbanowicz et al., 2016). More than 2000 proteins and peptides related with oral cancer and systemic diseases in saliva have been discovered (Wong, 2012). Comprehensive analysis of salivary proteome can help us to deepen the understanding of oral cancer and to seek potential biomarkers for early non-invasive screening of oral cancer (Zhang et al., 2013; Cheng et al., 2014).

Saliva: an alternative diagnostic fluid
Saliva has long been considered a potential alternative to blood serum and urine to provide a mirror of the body’s health. It is a mixture of secretions mainly from three major glands (submandibular, sublingual and parotid) and minor salivary glands. Meanwhile, gingival crevicular fluid (GCF), microorganisms and their products, food debris, and desquamated epithelial cells are also important components of saliva (Chaubron, 2015). In some exceptional cases, saliva even contains expectorated bronchial secretions, serum and blood derivatives from oral wounds (Malathi et al., 2014). Analysis of saliva offers several benefits including non-invasive and stress-free sample collection, easy storage and transportation, patients cooperation in providing samples, cost effectiveness, and minimal risk of infection, compared to traditional blood or tissue-based biochemical analysis (Singh and Prasad G., 2014; Nunes et al., 2015a). There is a growing interest in saliva for the extensive screening and detection are still the most effective strategies in reducing morbidity of oral cancer. Salivary biomarkers could be excellent and convenient tools for achieving public screening of oral cancer at early stage. And it is recommended that oral cancer suspected by early screening should be definitely diagnosed by tissue biopsy.
Salivary proteomics

Composition of the salivary proteomics

It is noteworthy that there is a poor correlation between salivary transcriptomics and salivary proteomics since proteins have no strict linear relationship with genomes (or mRNA): modifications of proteins like post-translational modifications (PTM) endow proteins with complex structural and functional features; Complex network of interactions is found among salivary proteins (Pandey and Mann, 2000).

Bandhakavi et al. (Bandhakavi et al., 2009) has detected 2340 proteins in saliva and they presented the largest salivary proteomic dataset to date by using an analysis platform coupled hexapeptide library for dynamic range compression with three-dimensional peptide fractionation. Saliva contains about 30% of the proteins found in blood, but some salivary proteins with specific roles are only produced in oral cavity (Perezcornejo et al., 2012). There are six major families of proteins involved in salivary proteomics: proline-rich proteins (PRPs) including acidic PRP (aPRP), basic PRP (bPRP), and glycosylated PRP (gPRP), α-amylases, mucins, salivary (S-type) cystatins, histatins, and statherin (Figure 1) (Castagnola et al., 2012a; Schulz et al., 2013a). Although some of their concentrations are 10–15 times lower than protein concentrations in plasma, the advancements in analytical high-throughput technology have greatly increased the detection sensitivity and specificity of proteomic biomarkers in saliva (Sivadasan et al., 2015; Liang et al., 2016; Sun et al., 2018).

![Figure 1. Major proteins in human saliva (%).](image)
Methods of salivary proteome analysis

Considering proteomes in saliva are vulnerable to outside factors, saliva shall be submitted to preanalytical treatments as follows: Collected saliva must be refrigerated at 4 °C and then be operated in a low temperature to avoid bacterial contamination within 3 to 6 hours (Kawas et al., 2012; Nunes et al., 2015b). Besides, addition of sodium azide in saliva is recommended to inhibit bacterial growth, but it may cause adverse interference in immunoassays with horseradish peroxidase (Nunes et al., 2011). It is also useful to apply protease inhibitors and stabilizers like EDTA, aprotinin, leupeptin and thimerosal to avoid protein degradation (Haywood et al., 2011).

Analytical techniques for salivary proteomics are roughly classified into top-down and bottom-up strategies (Figure 2) (Castagnola et al., 2012; Martelli et al., 2014; Sannam et al., 2016). Top-down proteomics focuses on analysis of the intact naturally occurring proteome while bottom-up proteomics is used to analyze salivary proteins which have been digested. Two-dimensional gel electrophoresis (2DGE), a top-down platform, is the most basic technology allowing separation of complex protein mixtures more than 5000 proteins (Karsani et al., 2014; Santucci et al., 2015). However, this method has inevitable shortcomings: firstly, small proteins or peptides with very acidic or basic isoelectric point (pI) may migrate outside its analysis ranges (Rabilloud, 2015); secondly, highly abundant proteins can obscure the less abundant ones by this method; finally, this method suffers from many variabilities such as gel preparation, unusual migration and staining of protein isoforms.

Mass spectrometry (MS) with fast speed and high sensitivity allows us to examine salivary proteomes in level of expressions as well as posttranslational modifications. This method is usually combined with Surface-enhanced laser desorption ionization (SELDI), matrix-assisted laser desorption ionization (MALDI) or time-of-flight (TOF) to measure intact proteins or peptides. SELDI-TOF-MS plays an important role in sample purification, desorption/
ionization and protein separation in Protein Chip (Al-Tarawneh et al., 2011; Ardito et al., 2016). By comparison, MALDI-TOF-MS with higher sensitivity and simplicity can be used for initial profiling prior to further identification by HPLC-MS (Al-Tarawneh et al., 2011). Chemical labeling techniques including isotope-coded affinity tags (ICAT), isotope tags for relative and absolute quantification (iTRAQ), absolute quantification of proteins using internal standards (AQUA) and stable isotope labeling by amino acids in cell culture (SILAC) are also widely used to observe quantitative alterations of salivary proteome in changeable stages (Castagnola et al., 2012a; Sannam et al., 2016).

Salivary proteomics for oral cancer

Saliva proteomic biomarkers for oral cancer

Recently, Chen et al (Chen et al., 2017) found 25 out of 56 salivary proteins were significantly different between OSCC patients and controls (fold change > 5, p < 0.05, n = 119) by selected/multiple reaction monitoring (SRM/MRM). More importantly, they suggested to combine biomarkers Complement factor H (CFAH), C-reactive protein (CRP) with fibronectin (FINC) (>10 foldchange, P <0.05, and area under the curve > 0.8) to early screen oral cancer. Similarity, Krapfenbauer et al (Krapfenbauer, 2014) identified 25 proteins specific for OSCC and they recommended them as potential biomarkers for oral cancer. Moreover, out of these 25 proteins, 12 have never been reported: proteins galectin-7, coflin, CRP precursor, creatine kinase, m-chain, fatty acid binding protein, keratin type II, myosin light chain 2 and 3, nucleoside diphosphate kinase A, phosphoglycerate mutase 1, plakoglobin, and retinoic acid binding protein II. Gallo et al (Gallo et al., 2016) also analyzed data of saliva from OSCC patients and healthy controls (CTRL), in order to validate the salivary proteomic signatures of OSCC. Their Mann-Whitney test showed 22 peaks were significant between controls and OSCC; 15 and 16 significant peaks were identified comparing CTRL to N- and N+ respectively (N+ and N- denoting the presence or absence of lymph node metastasis respectively); 6 different peaks were identified in N- to N+ samples.

It has long been believed that there is a strong link between chronic inflammation and oral cancer where cute-phase response proteins (APPs) play different roles (Marx). APPs family members Haptoglobinβ (HAPβ), α-antitrypsin (AATα), complement-C3 (C3), hemopexin (HPX), serotransferrin, transthyretin (TTR) and fibrinogen β (FIBβ) were detected in saliva of patients with OSCC. The authors furtherly demonstrated that the increased levels of HAPβ, AATα, C3, HPX, TF, TTR, FIBβ and ABG were potential biomarkers for the early detection of OSCC (Jessie et al., 2013). To the best of our knowledge, this is the first report of enhanced expression of AAT, HAPβ, C3, HPX, TTR and ABG in the saliva of OSCC patients. Yu et al (Yu et al., 2016) assembled an inflammatory protein panel which consists of matrix metalloproteinase-1 (MMP1), kininogen 1 (KNG1), annexin a2 (ANXA2) and heat shock protein A5 (HSPA5) to early screen OSCC. In addition to MMP-1 mentioned in their study, MMP family members like MMP-2, -3, -9, -10, -12, and -13 have also been demonstrated to be related with oral cancer (Han et al., 2014; Agha-Hosseini and Mirzaei-Dizgah, 2015; Gallab and Shaker, 2016). There was a new discovery that polymorphisms in MMP genes contribute to OSCC, which expand our knowledge of the roles of MMPs in the process of oral cancer (Pereira et al., 2012).

Besides biomarkers above discovered by high-throughput methods, there are some potential proteomic biomarkers newly recommended by traditional methods. Resistin (RETN) is a cysteine-rich adipose-derived peptide hormone which also known as adipose tissue-specific secretory factor (ADSF) (Kao and Tang, 2014). It was initially shown to function as endocrine hormone and was later demonstrated to participate in type II diabetes mellitus, inflammation and heart disease. Increasing evidences demonstrated RETN was highly correlated with the late-stage OSCC and lymph-node metastasis. This result suggested RETN is a potential salivary biomarker for the early diagnosis and prognosis estimation of OSCC (Wu et al., 2015). In addition, reactive oxygen species (ROS) have been proved to be implicated in the genesis and promotion of oral cancer, and salivary albumin as part of compensatory antioxidant defense system was implicated in a significant increase in oral precancer and oral cancer cases. This result indicated that albumin may play a vital role in the diagnosis and prognosis of premalignant and malignant oral disease by virtue of its antioxidation role in counteracting oxidative stress (Metgud and Patel, 2014). Immunogenic proteins have also attracted considerable attention in the early detection of oral cancer. More recently, four promising proteins known as human pancreatic alpha-amylase (HPA), human salivary amylase (sAA), keratin-10 (K-10) and human serum albumin (GA-HSA) have been implicated as salivary...
Salivary Proteomics

Li et al.

salivary proteomic biomarkers for OSCC, although further validations are required (Mu et al., 2014).

We summarized the representative salivary proteomic biomarkers for oral cancer (Table 1). These results demonstrated that salivary proteins exhibit significant characters in OSCC patients. Moreover, some of them may be related to lymph node metastasis and ultimately contribute to the early diagnosis and prognosis estimation of oral cancer.

Challenges in salivary proteomic research
Although salivary proteomic analysis holds great promise, there are still some barriers to transfer this technology from the laboratory to clinical practice (Kaur et al., 2018). Complicity of proteome caused by PTMs is one of the most troublesome challenges in salivary proteomic research.

Table 1. Potential salivary biomarkers for oral cancer detection.

<table>
<thead>
<tr>
<th>Protein name</th>
<th>Representative reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-amylase</td>
<td>Quantitative proteomic analysis reveals decreased salivary amylase in oral cancer(Rhodus, Jamison, STONE, & Griffin, 2012).</td>
</tr>
<tr>
<td>Albumin</td>
<td>Serum and salivary levels of albumin as diagnostic tools for oral premalignancy and oral malignancy(Metgud & Patel, 2014).</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1 beta in unstimulated whole saliva is a potential biomarker for oral squamous cell carcinoma(Kamatani et al., 2013).</td>
</tr>
<tr>
<td>IL-6 IL-8 TNF-α</td>
<td>Salivary IL-8, IL-6 and TNF-α as Potential Diagnostic Biomarkers for Oral Cancer(Sahibzada et al., 2017).</td>
</tr>
<tr>
<td>Defensin-1</td>
<td>Defensin, a peptide detected in the saliva of patients with oral cancer patients(Mizukawa, 2011).</td>
</tr>
<tr>
<td>CD44 CD59</td>
<td>Salivary protein and solCD44 levels as a potential screening tool for early detection of head and neck squamous cell carcinoma,(Franzmann et al., 2012) Development of salivary markers for the early detection of oral squamous cell carcinoma(Romero, Thong, Poon, & Soo, 2013).</td>
</tr>
<tr>
<td>Complement factor B(CFB) Complement C4-B(C4B) Alpha-1-antitrypsin(SERPIA) Leucine-richalpha-2-glycoprotein1 (LRG1)</td>
<td>A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva(Kawahara et al., 2016).</td>
</tr>
<tr>
<td>Resistin(RETN)</td>
<td>Saliva proteome profiling reveals potential salivary biomarkers for detection of oral cavity squamous cell carcinoma(Wu et al., 2015).</td>
</tr>
<tr>
<td>Haptoglobin(HAPβ) Hemopexin(HPX) Serotransferrin(TF) Transthyretin(TTR) Fibrinogenβ(FIBβ) α-1B glycoprotein(ABG)</td>
<td>Aberrant proteins in the saliva of patients with oral squamous cell carcinoma(Jessie et al., 2013).</td>
</tr>
<tr>
<td>Actins</td>
<td>Mass Spectrometry-Based Salivary Proteomics for the Discovery of Head and Neck Squamous Cell Carcinoma(Jarai et al., 2012).</td>
</tr>
<tr>
<td>Zinc finger protein 28(HZF28) Regulator G-protein 3</td>
<td></td>
</tr>
<tr>
<td>Indoleamine2,3-dioxygenase (IDO) Oral-facial-digital syndrome type 1 (OFD1) Centrosomal protein290(CEP290) Annexin 1</td>
<td></td>
</tr>
<tr>
<td>Protein Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Annexin a2 (ANXA2), Kininogen1 (KNG1), Heat shock protein (HSPA5)</td>
<td>Saliva protein biomarkers to detect oral squamous cell carcinoma in a high-risk population in Taiwan (Yu et al., 2016).</td>
</tr>
<tr>
<td>MMP-1, MMP-2, MMP-3, MMP-9, MMP-10, MMP-12, MMP-13</td>
<td>Association between matrix metalloproteinase 1 (-1607 1G/2G) polymorphism and cancer risk: a meta-analysis including 19706 subjects (G. Han et al., 2014). Serum and Saliva MMP-3 in Patients with OLP and Oral SCC. (Aghahosseini et al., 2015) Serum and salivary levels of chemerin and MMP-9 in oral squamous cell carcinoma and oral premalignant lesions (Ghallab & Shaker, 2016). Tumor and salivary matrix metalloproteinase levels are strong diagnostic markers of oral squamous cell carcinoma (Stottmiller et al., 2011). Serum and saliva collagenase-3 (MMP-13) in patients with oral lichen planus and oral squamous cell carcinoma (Agha-Hosseini & Mirzaii-Dizgah, 2015).</td>
</tr>
<tr>
<td>Mac-2 binding protein (M2BP), Myeloid-related protein 14 (MRP14), Profilin, Catalase, Endothelin-1</td>
<td>Salivary proteomics for oral cancer biomarker discovery (Hu et al., 2008).</td>
</tr>
<tr>
<td>Ga Module Complexed with Human Serum Albumin (GA-HSA), Keratin-10 (K-10)</td>
<td>Detection of host-specific immunogenic proteins in the saliva of patients with oral squamous cell carcinoma (Mu et al., 2014).</td>
</tr>
<tr>
<td>Keratin-2 (K-2), Galectin-7, Cofilin, CRP precursor, Creatine kinase m-chain, Fatty acid binding protein (FABP), Myosin light chain 2, 3 (MLC-2,3), Nucleoside diphosphokinase (NDKA), Phosphoglycerate mutase 1 (PGAM1), Plakoglobin (PG), Retinoic acid binding protein 2 (CRABP-2)</td>
<td>Identification of tumour-related proteins as potential screening markers by proteome analysis—protein profiles of human saliva as a predictive and prognostic tool (K Krapfenbauer, Drucker, & Thurnher, 2014).</td>
</tr>
<tr>
<td>Alpha-fetoprotein (AFP), Carcinoembryonic antigen (CEA)</td>
<td>Expression and clinical significance of AFP and CEA in serum and saliva of patients with oral squamous cell carcinoma (Xu & Department, 2016).</td>
</tr>
<tr>
<td>CA125, Tissue Polypeptide-specific antigen (TPA)</td>
<td>Saliva CA125 and TPS levels in patients with oral squamous cell carcinoma (Geng et al., 2013).</td>
</tr>
<tr>
<td>Basic fibroblast growth factor (FGF2)</td>
<td>The evaluation of basic fibroblast growth factor and fibroblastic growth factor receptor 1 levels in saliva and serum of patients with salivary gland tumor (Huang, Li, Li, Jin, & Ma, 2012).</td>
</tr>
<tr>
<td>Enolase-1</td>
<td>A screening test for oral cancer using saliva samples: Proteomic analysis of biomarkers in whole saliva (Katakura et al., 2015).</td>
</tr>
<tr>
<td>Enzyme nicotinamide N-methyltransferase (NNMT)</td>
<td>Analysis of tissue and salivary nicotinamide N-methyltransferase in oral squamous cell carcinoma: basis for the development of a noninvasive diagnostic test for early-stage disease (Sartini et al., 2012).</td>
</tr>
<tr>
<td>Other proteins: P53; Ki67; CA15-3; Cyclic D1; Cyfra 21.1; S100A2,7,9; STAT3; Statherin; Stratifin; Transferrin; Kallikerin-7; Glycolytic enzyme; IgG; Telomerase; Thioredoxin; Cystatin A; Truncated cystatin SA-I; Rostate specific antigen (PSA); Adenosine; Transforming growth factor (TGF-1); Antioxidant like-1 (AOP-1); Deaminase (ADA); Serpin B3 (SCCA1); 8-oxoquanine DNA glycosylase (OGG1);</td>
<td></td>
</tr>
</tbody>
</table>
impediments. PTMs mainly include disulphide bond formation, proteolytic cleavages, glycosylation, phosphorylation, and sulphation, and many of them are highly reversible and dynamic which contributes to complex protein activity, stability and location (Yang et al., 2015). Therefore, research on post-translational modified proteins is still a big challenge.

However, continuous technological advancements greatly facilities the research on PTMs. High-resolution mass spectrometry (MS) has become an inevitable tool to detect and quantify PTMs. A public database named Phospho Site Plus (PSP) has described about 240000 phosphorylation and 22000 ubiquitination sites for more than 20000 proteins by MS/MS experiments (Li et al., 2018). Besides, dynamic range compression before hexapeptide libraries can increase the detection sensitivity of low-abundance protein and PTMs. When combined MS, dynamic range compression and hexapeptide libraries, nearly double salivary phosphoprotein and N-glycoprotein identifications were observed. Sample enrichment and network-based protein-protein interactions have also been demonstrated to be powerful tools identifying the full suite of PTMs with a focus on phosphorylation and glycosylations (Schulz et al., 2013b; Amiri et al., 2018).

Problems
Reliable biomarkers are required to be not only highly disease-related, but also stable. The rigor and reproducibility of salivary proteomic biomarkers is one of the critical problems we are facing now. Firstly, salivary molecular identification and evaluation might vary from one experiment to another. A standardized system for saliva collection and analysis is therefore indispensable. In addition, salivary proteins are vulnerable to environmental factors like proteolytic enzymes, oral microorganisms, and circadian patterns (Bonne and Wong, 2012). Immediate processing, the use of freezers and protease inhibitors are recommended to tackle this problem. As we all know, many informative proteins are generally present in lower amounts in saliva than in serum (Javaid et al., 2015), so highly sensitive tools and methods are necessary for salivary proteomic analysis. Moreover, it is very necessary to combine salivary proteomic analysis with conventional oral examinations. Finally, it is definite that salivary proteomic candidates require extensive validation in large patient cohorts before they can be translated into clinical applications.

We hope that in the near future, salivary proteomic biomarkers will be specific enough to screen oral cancer at an early stage, and to improve life quality of oral cancer patients greatly.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (No.81372892), the Research Foundation (SKLOD201601) from the State Key Laboratory of Oral Disease Sichuan University.

References

