An Account of Cloned Genes of Methyl-erythritol-4phosphate Pathway of Isoprenoid Biosynthesis in Plants

Deepak Ganjewala^{1*}, Shiv Kumar¹, and Rajesh Luthra²

¹School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore-632 014 (T.N.), India ²Human Resource Development Group, Council of Scientific and Industrial Research (CSIR), Pusa, New Delhi-110 012, India

Received 8 August 2008 Revised 19 September 2008 Accepted 23 October 2008

Abstract:

Isoprenoids, also known as terpenoids, are biosynthesized by the condensation of the two C₅ unit isopentenyl diphosphate (IPP) and isomer dimethylallyl diphosphate (DMAPP). Generally, plants use two separate pathways plastidial Methyl-erythritol-4-phosphate (MEP) and cytosolic acetate-mevalonate (MVA) pathways for formation of IPP. The genes, enzymes and intermediates of the MEP pathway have been unravelled in plants over the past few years. Interestingly, MEP pathway enzymes are encoded by nuclear genes but they function in plastids to produce precursors for isoprenes, monoterpenes, carotenoids, abscisic acid, gibberellins, and the side chain of chlorophylls, tocopherols, phylloquinones, and plastoquinone. In Arabidopsis thaliana, a complete set of genes of MEP pathway homologous to the E. coli MEP pathway genes have been identified. Although, these genes have been cloned and characterized from several other plants but overall information about them at one place is not available so far. Though, a range of reviews are available about their roles in isoprenoid biosynthesis and regulation. Therefore, we decided to compile the data on cloned and characterized genes of MEP pathway in plants. Also, we summarize the results of the previously published reports, particularly those which were based on incorporation of ¹³C-glucose or by application of specific inhibitors such as mevinolin and fosmidomycin to look into the MEP pathway in plants. In addition, we searched for the two key enzymes DXS and HMGR that could be assigned for the acetate-MVA and MEP pathway with the help of bioinformatics tools. Presence or absence of these enzymes can be correlated with respective isoprenoid biosynthetic pathways in plants.

*For correspondence: deepakganjawala73@yahoo.com Tel: +91-416-2243093; Fax: +91-416-2243091 Cell: +91-99945-47146

Horizon Scientific Press. http://www.horizonpress.com

Keywords: Isoprenoids; Methyl-erythritol-4-phosphate (MEP); Acetate-MVA pathway; Hydroxyl-methylglutaryl-CoA reductase (HMGR); 1-deoxy-D-xylulose 5-phosphate synthase (DXPS or DXS).

Introduction

Plant secondary metabolites viz., isoprenoids have always been fascinating for the researchers. Obviously, they are the largest and most diverse class of plant secondary metabolites (Dubey et al., 2003). Over the years isoprenoids have been exhaustively investigated. There are many research papers, reviews, commentaries and books are available covering various aspects of isoprenoids viz., biosynthesis and regulation and functions in plants and microorganisms (Croteau, 1987; Rohmer, 1999; 2003; Lichtenthaler, 1999; Lichtenthaler, 2001; Eisenreich et al., 1997; 2001; 2004; Rodriguez-Concepcion and Boronat, 2002; Chemler et al., 2006; Cheng et al., 2007). Isoprenoids are multifunctional; they play very important roles in membrane structure, redox reactions, light harvesting and photo-protection, and regulations of growth and development. They not only perform various roles in the plant's life such as, plantenvironment, plant-insect, plant-microorganism and plant-plant interactions but they became an essential part of our life as medicines, flavours, fragrances, cosmetics, dyes, insecticides and more (Verpoorte et al., 2002; Harborne, 2001; Dixon, 2001). Currently, isoprenoids are being used as anti-cancer and antimicrobial drugs for example artimicinin as a powerful antimalarial (Dhingra et al., 2000) and taxol as anti-cancer (Cragg et al., 1997) agents.

Despite the great deal of structural and functional diversity all isoprenoids are synthesized by consecutive condensation of common C5 isoprene precursor; isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). IPP therefore is regarded as the universal precursor of all the isoprenoids. IPP, in turn is biosynthesized in two different sites via two separate and independent biochemical pathways: 1. Cytosolic acetate-MVA pathway and 2. Plastidial Methylerythritol 4- phosphate (MEP) also called as 1-deoxy-Dxylulose 5-phosphate (DOXP) or glyceraldehyde-3phosphate-pyruvate (GAP-Pyruvate) pathway (Fig. 1). In the present article, the pathway is described as MEP pathway. In general, acetate-MVA pathway produces sesquiterpenes and triterpenes while MEP pathway produces monoterpenes, sesquiterpenes, diterpenes, tetraterpenes, plastoquinone and prenyl side chains of chlorophyll.

In brief, MEP pathway (Fig. 1) begins with the formation of 1-deoxy-D-xylulose 5-phosphate (DOXP/DXP) by the condensation of pyruvate and glyceraldehyde 3-phosphate catalysed by DOXP synthase (DXS,

Fig. 1. MEP pathway for the biosynthesis of isoprenoids in plants. ABA, abscisic acid; CDP-ME, 4-(cytidine-5'-diphospho)-2-C-methyl-p-Erythritol; CDP-MEP, 4-Diphosphocytidyl-2C-methyl-p-erythritol 4-phosphate; DMAPP, dimethylallyl diphosphate; DXP, 1-deoxy-p-xylulose 5-phosphate; GAP, glyceraldehyde 3-phosphate; GGPP, geranyl giphosphate; GPP, geranyl diphosphate; HBMPP, 4-hydroxy-3-methylbut-2-enyl diphosphate; IPP, isopentenyl diphosphate; ME-CPP, 2C-methyl-p-erythritol 2,4-cyclodiphosphate; MEP, 2C-methyl-p-erythritol 4-phosphate. Enzymes are indicated in bold italic; 4-(cytidine-5'-diphospho)-2-C-methyl-p-Erythritol kinase (CMK, EC 2.7.1.48); 4-Diphosphocytidyl-2C-methyl-p-erythritol 4-phosphate synthase (CMS, EC 2.7.50); 1-deoxy-p-xylulose 5-phosphate reductase (HDR, EC 1.17.12); 1-deoxy-p-xylulose 5-phosphate synthase (MCS, EC 4.1.3.37); 2C-methyl-p-erythritol 2,4-cyclodiphosphate synthase (MCS, EC 4.6.1.12).

(EC 4.1.3.37). DOXP then undergo intra-molecular rearrangement and reduction catalysed by 1-deoxyp-xvlulose 5-phosphate reductoisomerase (DXR. EC 1.1.1.267) to yield methyl erythritol-4-phosphate (MEP) which is regarded as an immediate precursor of plastidic isoprenoids. MEP is consecutively converted 4-diphosphocytidyl-methylerythritol into (CDP-ME), 4-diphosphocytidyl-methylerythritol (CDP-MEP) and methyl-erythritol 2,4-cyclodiphosphate (ME-cPP). These reactions are carried out by CDP-ME synthase (CMS, EC 2.7.7.60), CDP-ME kinase (CMK, EC 2.7.1.148) and ME-cPP synthase (MCS, EC 4.6.1.12). Methylerythritol 2,4-cyclodiphosphate (ME-cPP) then converted to hydroxymethylbutenyl 4-diphosphate (HMBPP) by an enzyme hydroxymethylbutenyl 4-diphosphate synthase (HDS, EC 1.17.4.3). HMBPP is finally converted into a mixture of IPP and DMAPP by the enzyme HMBPP reductase (HDR, 1.17.1.2) (Eisenreich et al., 2001; 2004).

At present, the genes encoding enzymes of MEP pathway with homology to the E. coli MEP pathway enzymes haven been identified from variety of plants including Arabdopsis thaliana (http://www.Arabidopsis. org). The present review is aimed to provide the information on these cloned and characterized genes of MEP pathway in plants. Basically, the idea to compile the information on MEP pathway genes came from a very likely article on cloned genes of acetate-MVA pathway in plants by Scolink and Bartley (1996). The information about cloned genes of MEP pathway in one piece would be helpful to home in to isoprenoid biosynthesis. The results presented here were derived through online search and analysis (http://www.ncbi.nlm.nih.gov/; http:// www.tigr.org/). In addition, published literatures were also taken in account such as those describe application of ¹³C-glucose-Nuclear Magnetic Resonance (NMR) spectroscopy for elucidation of MEP pathway in plants. In addition, we took the help of bioinformatics tools to search DXS and HMGR, two key enzymes of their respective pathways to investigate these pathways in plants.

¹³C-glucose-NMR spectroscopy provides clues for the MEP pathway

The potential of using ¹³C-glucose-NMR spectroscopy to elucidate metabolic pathways in plants has long been recognized. Early efforts relied on NMR spectra of metabolites which were related to the underlying pathways used to create them (Jeffrey et al., 1991). NMR spectra have also been used to elucidate the flux through metabolic pathways (Bacher et al., 1998; Kelleher, 2001). The use of in vivo ¹³C-NMR spectroscopy to study the biosynthesis of secondary metabolites in plants has been well documented previously (see Table 2). Useful clues to the origin of the carbon atoms of isoprenoids in bacteria and for the elucidation of the MVA independent route were obtained from labeling experiments using ¹³C-glucose with Zymomonas mobilis, a facultative anaerobic and fermentative bacterium (Sprenger, 1996). The use of NMR spectroscopy in plant secondary metabolism has been hampered mainly because of very low concentration of the secondary metabolites, and the pathway leading to isoprenoid formation are often branched hence the

¹³C-label of early precursors is diluted into several metabolites at the end. These difficulties in resolving the origin of Isoprenoid units could be overcome by NMR analysis of extracts or isolated compounds. To investigate the biosynthetic origin of isoprenoid building blocks of secondary metabolites, the pathway-independent precursor ¹³C-glucose, which produces distinctly different labelling patterns of the individual isoprene units for the MEP and MVA pathways is generally employed (Rohmer, 1999). Given that glucose is a general intermediary metabolite, the isotope from the proffered carbohydrate can be diverted to virtually all metabolic compartments and intermediates in plant cells (Eisenreich *et al.*, 2004).

The biosynthetic origin of a considerable number of primary and secondary plant terpenoids has been and currently being reinvestigated using ¹³C-glucose-NMR spectroscopic technique in higher and lower plants (liverworts). Table 1 provides the information on application of ¹³C-NMR spectroscopy to elucidate the MEP pathway in plants. The data show that a wide variety of monoterpenes, diterpenes and sesquiterpenes (germacrene) are biosynthesized predominantly via the MEP pathway. Beside the analysis of these published reports on MEP pathways, our online database search for DXS and HMGR the key regulatory enzyme respectively of MEP and acetate-MVA pathways further provided the clue for the operation of either of these pathways in plants. Table 2 provides information on distribution of DXS and HMGR enzymes in plants. This information was collected online from http://www.ncbi.nlm.nih.gov/.

Cloned genes of MEP pathway

Our knowledge and understanding about the biosynthesis and regulation of isoprenoids in plants has been tremendously increased during the past two decades. As a result, genes encoding enzymes of the MEP pathway have been cloned and characterized from a several plants in the recent time. Though, several genes of the MEP pathway downstream from *ispC* were discovered by a strategy combining biochemical evidence with comparative genomic analysis. Please see a review by Eisenreich et al. (2004) for detailed description about the mechanism of action of enzymes of MEP pathway. Here in the Table 3 we provide information exclusive on cloned and characterized genes of the MEP pathway in plants. The information mainly comprises of GeneBank accession number, size and protein or gene name. Table 3 shows that DXS and DXR have been cloned and characterized from a variety of plants while other enzymes of the MEP pathway could only be characterized only from a few plants. So far, HDS is known from only two plants Nicotiana benthamiana and Oryza sativa. Similarly HDR is also known from only two plants, Arabidopsis thaliana and N. benthamiana. An overall distribution of MEP genes in plants is presented in Table 4. From Table 4, it is clear that A. thaliana and O. sativa (Japonica var.) genome has complete set of genes encoding enzymes of MEP pathway along with HMGR of acetate-MVA pathway. Stevia rebaudiana genome has shown at least six of the seven genes of MEP pathway, but lacks the HMGR of acetate-MVA pathway. Further analysis of the data has revealed that 19 out of 39 plants searched online have

i38 Ganjewala et al.

Table 1. MEP pathway in plants verified on the basis of ¹³C-glucose-NMR spectroscopy.

Plants	Isoprenoids	References		
Catharanthus roseus	Terpenoids Iridoid glucoside secologanin	Arigoni et al., 1997; 1999; Contin et al., 1998		
Chelidonium majus Populus nigra Salix viminalis	Isoprene	Zeidler <i>et al.</i> , 1997, 1998		
Conocephalum conicum	Isoprenoids	Thiel <i>et al</i> ., 2002		
Dacus carota Hordeum vulgare Lemna gibba	L-carotene, lutein, prenyl chains of chlorophylls and plastoquinone-9	Lichtenthaler <i>et al.</i> , 1997		
Eucalyptus globules	Cineol	Rieder <i>et al.</i> , 2000		
Fossombronia alaskana	Hopane triterpene and three diterpenes	Hertewich <i>et al</i> ., 2001		
Hordeum vulgare	sesquiterpenoid cyclohexane derivatives	Maier <i>et al.</i> , 1998		
Liriodendron tulipifera	Terpenes	Sagner <i>et al.</i> , 1998		
Marrubium vulgare	Labdane diterpenoid marrubin	Knoss <i>et al.</i> , 1997		
Matricaria recutita	Isoprene units of chamomile sesquiterpenes	Adam and Zapp, 1998		
Mentha citrate	Linalyl Acetate monoterpene	Fowler <i>et al.</i> , 1999		
Mentha pulegium	Monoterpenes	Eisenreich et al., 1997		
Narcissus pseudonarcissus	<i>b</i> -carotene	Fellermeier <i>et al.</i> , 1999		
Pelargonium graveolens Thymus vulgaris	Monoterpenes	Eisenreich <i>et al</i> ., 1997		
Persea Americana	Abscisic acid; Carotenoids and abscisic	Hirai et al., 2000; Milborrow et al., 1998		
Rauwolfia serpentine	Monoterpene loganin	Eichinger et al., 1996		
Taxus chinensis	Taxol (diterpene)	Eisenreich <i>et al</i> ., 1996		
Trichcolea tometella	Trichcolein and deoxytometellin (Hemi- and mono- terpene moieties and diterpene phytol)	Barlowa <i>et al.</i> , 2003		
Vitis Vinifera	Linalool and geraniol	Klink <i>et al</i> ., 2005		
Lepidolaena hodgsoniae	Sesquiterpene hodgsonox	Luan <i>et al</i> ., 2002		
Anisotome layallii	Anisotomenes (bicyclic irregular diterpenes)	Barlowa <i>et al</i> ., 2003		
Piper aduncum	Isoprene Units in Chromenes	Leite <i>et al</i> ., 2007		
Solidago Canadensis	Germacrene D (sesquiterpenes)	Steliopoulos <i>et al.</i> , 2002		

genes of both MEP and acetate-MVA pathway in their genome, while the others 20 plants had exclusively genes of MEP pathway.

Conclusion

pathogenic Manv microorganisms includina Mycobacterium tuberculosis and Plasmodium falciparum also operate MEP pathway for the biosynthesis of isoprenoids. In fact, isoprenoids plays crucial role in the survival of P. falciparum in host cells. Knowledge of the MEP pathway in such pathogenic microorganism is currently being exploited for the development of structurebased anti-microbial drugs by targeting the enzymes of MEP pathway. Therefore, details concerning the genes, enzymes and intermediates of the MEP pathway have become essential in achieving these goals. Currently, fosmidomycin an inhibitor of DOXP reductoisomerase (DXR) of MEP pathway has been successfully tested to hang-up isoprenoid biosynthesis in P. falciparum. Similar strategies could be employed for the development of novel herbicides (Lichtenthaler et al., 2000). This aspect of the isoprenoids researches have a direct impact on human health, hence created much interest and awareness among the researchers in the recent years to look for new structure based drugs against more pathogenic microorganisms and weeds relying on MEP pathway. Our, knowledge and understanding about the plant secondary metabolite biosynthesis and regulation has greatly accelerated these efforts. Most certainly, comparative genomics and in combination of bioinformatics has been an aid.

Acknowledgements

Authors are grateful to the Chancellor, VIT University for providing the necessary support and Professor Lazar Mathew and Professor Braj Nandan Prasad, School of Biotechnology, Chemical and Biomedical Engineering, VIT University for their constant encouragement and valuable suggestions. Financial support from the Department of Sciences and Technology (DST) and Council of Scientific and Industrial Research (CSIR), New Delhi, Government of India is duly acknowledged.

Table O	Describe of earling	a a a such fau DVO		is assigned to MED		
Table 2.	Results of online	search for DXS a	and HIVIGR. DXS	is assigned to MEP	whereas hivigh to) acetate-iviva patriway

	MEP Pathway DOXP Synthase (DXS)		Acetate-Mevalonate Pathway HMG-CoA Reductase (HMGR)	
Plants	Accession No.	Size	Accession No.	Size
Arabidopsis thaliana	BAB02345	604	AAA67317	562
Antirrhinum majus	AAW28999	733		
Artemisia annua	AAD56390	713	AAD47596	567
Andrographis paniculata	AAP14353	691	AAP14352	556
Camptotheca acuminate			AAB69726	575
Capsicum annuum	CAA75778	719	AAD28179	604
Catharanthus roseus	CAA09804	716	AAT52222	601
Cistus incanus subsp. creticus			ABL10110	388
Chrysanthemum x morifolium	BAE79547	669		
Elaeis guineensis	AAS99588	707		
Ginkgo biloba	AAS89341	717	AAU89123	571
Hevea brasiliensis	AAS94123	720	CAA38467	575
Lycopersicon esculentum	AAD38941	719	AAB62581	601
Lycopersicon hirsutum	AAT97962	714		
Mentha x piperita	AAC33513	724		
Medicago truncatula	ABP03805	711	ABE88827	583
	ABP03804	710		
	ABO82094	717		
Morinda citrifolia	AAL32062	722		
Narcissus pseudonarcissus	CAC08458	709		
Nicotiana tabacum			AAB87727	604
			AAO85554	604
Oryza sativa (Japonica)	NP_001055524	720	BAD10066	561
Oryza sativa (Indiaca)	EAY98024	710	CAA92821	576
	AAB88295	594		
Pueraria montana var. lobata	AAQ84169	717		
Picrorhiza kurrooa			ABC74565	561
Salvia miltiorrhiza			ABB45812	174
			AAU87798	267
Stevia rebaudiana	CAD22155	715		
Tagetes erecta	AAG10432	725	AAC15475	574
Taxus cuspidate				
Taxus x media	AAS89342	742	AAQ82685	595
Zea mays	ABP88134	719	CAA70440	579
	ABP88135	705		
	AAX49359	481		
	AAX49358	424		
Vitis Vinifera	CAN71054	1638	CAN72217	575

DOXP: 1-deoxy-D-xylulose 5-phosphate; HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A.

i40 Ganjewala et al.

Table 5. Civiley and characterized enzymes of the MLF bathway in biar	Table 3.	Cloned and	characterized	enzymes	of the	MEP	pathway	/ in ·	plan
---	----------	------------	---------------	---------	--------	-----	---------	--------	------

Table 3. Cloned and characterized	d enzymes of the MEP pathway in	plants.				
Enzyme	Plant	Accession numbers	Size	Protein / Gene	Reference	
1-deoxy-D-xylulose 5-phosphate	Arabidopsis thaliana	NP_001078570	565	DXPS3	Sato <i>et al.</i> , 2000	
synthase (DXS, EC 4.1.3.37)		NP_196699	700	DXPS3		
		NP_850620	629	DXPS1		
		BAB02345	604	DXS		
	Antirrhinum majus	AAW28999	733	DXPS	Dudareva <i>et al.</i> , 2005	
	Capsicum annuum	CAA75778.1	719	dxs put.	Bouvier et al., 1996	
	Catharanthus roseus	CAA09804	716	DXS	Chahed et al., 1997	
	Chrysanthemum x morifolium	BAE79547	669	DXS	Kishimoto et al., 2006	
	Croton stellatopilosus	BAF75640	720	dxs	Wungsintaweekul et al., 2008	
	Elaeis guineensis	AAS99588	707	dxs	Khemvong et al., 2005	
	Ginkgo biloba	AAS89341	711		Gong <i>et al.</i> , 2006	
	Hevea brasiliensis	AAS94123	720	DXS	Seetang-Nun et al., 2008a	
		ABF18929	711	DXS2		
	Lycopersicon esculentum	AAD38941	719	dxs	Lois <i>et al.</i> , 2000	
	Morinda citrifolia	AAL32062	722	DXS	Han <i>et al.</i> , 2003	
	Oryza sativa (Japonica)	NP_001055524	720	dxs	Ohyanagi <i>et al.</i> , 2006	
	Oryza sativa (Indiaca)	AAB88295	594	CLA1	Campos <i>et al.</i> , 1997	
		TC263109		DXS1	Kim <i>et al.</i> , 2005	
		TC262788		DXS2		
		TC276717		DXS3		
	Picea abies	ABS50520	746	DXS2B	Phillips et al., 2007	
		ABS50519	740	DXS2A		
		ABS50518	717	DXS1		
	Stevia rebaudiana	CAD22155	715	dxs	Totte et al., 2003	
	Tagetes erecta	AAG10432	725	dxs	Moehs <i>et al.</i> , 2001	
1-deoxy-D-xylulose 5-phosphate reductase (DXR, EC 1.1.1.267)	Arabidopsis thaliana	CAB43344	406	dxr	Schwender <i>et al.</i> , 1999	
	Antirrhinum majus	AAW28998	471	dxr	Dudareva <i>et al.</i> , 2005	
	Camptotheca acuminate	ABC86579	472	Dxr	Yao <i>et al.</i> , 2008	
	Catharanthus roseus	AAF65154	474	dxr	Veau <i>et al.</i> , 2000	
	Chrysanthemum x morifolium	BAE79548	487	DXR	Kishimoto et al., 2006	
	Ginkgo biloba	AAR95700	477	Dxr	Gong <i>et al.</i> , 2005	
	Hevea brasiliensis	AAS94121	471	DXR	Seetang-Nun et al., 2008b	
	Hordeum vulgare	CAE47438	484	dxr	Hans <i>et al.</i> , 2005	
	Lycopersicon esculentum	AAK96063	475	DXR	Rodriguez-Concepcion <i>et al.</i> , 2001	
	Mentha x piperita	AAD24768	470	DXR	Lange and Croteau, 1999	
	Oryza sativa (Japonica)	NP_001041780	473	dxr	Ohyanagi <i>et al.</i> , 2006	
	Oryza sativa (Indiaca)	EAY72208	473	dxr	Yu <i>et al.</i> , 2005	
	Plectranthus barbatus	AAR99081	469	dxr	Engprasert et al., 2005	
	Pueraria montana var. lobata	AAQ84168	465	dxr	Sharkey et al., 2005	
	Rauvolfia verticillata	AAY87151	474	DXR	Wu et al., (in Press)	
	Salvia miltiorrhiza	ABJ80680	474	DXR	Liao <i>et al.</i> , 2007	
	Stevia rebaudiana	CAD22156	473	dxr	Totte <i>et al.</i> , 2003	
	Taxus cuspidate	AAT47184	477	dxr	Jennewein <i>et al.</i> , 2004	
	Stevia rebaudiana	CAD22156	473	dxr	Totte <i>et al.</i> , 2003	
	Taxus cuspidate	AAT47184	477	dxr	Jennewein <i>et al.</i> , 2004	

Table 3. Cloned					
Enzyme	Plant	Accession numbers	Size	Protein / Gene	Reference
4-Diphosphocytidyl-2C-methyl-D-	Arabidopsis thaliana	NP_565286	302	ISPD	Seki <i>et al.</i> , 2002
erythritol 4-phosphate synthase (CMS, EC 2.7.7.60)		BAC42737	302	ispD	
(0110, 20 2.1.1.00)	Ginkgo biloba	AAZ80386	327	MECT	Kim <i>et al.</i> , 2005
	Oryza sativa (Japonica)	BAD82130	297	ispD put.	Sasaki and Matsumoto, 2002;
	Oryza sativa (Indiaca)	EAY76759	408	ispD pat.	Yu <i>et al.</i> , 2005
4-(cytidine-5'-diphospho)-2-C-	Arabidopsis thaliana	O81014	383	ISPE	Lin and Kaul, 1999
methyl-D-Erythritol kinase (CMK, EC 2.7.1.148)	Lycopersicon esculentum	AAF87717	401	ispE	Lange and Croteau, 1999
20 2.7.1.140)	Mentha x piperita	P56848	405	ISPE	Rohdich et al., 2000
	Oryza sativa (Japonica)	NP_001044544	401	ispE	Ohyanagi <i>et al</i> ., 2006
2C-methyl-D-erythritol 2,4-cyclodi- phosphate synthase (MCS, EC 4.6.1.12)	Arabidopsis thaliana	AAM62786	231	MECDP_S	Gao <i>et al.</i> , 2006
	Ginkgo biloba.	AAY40863	239	Mecps	Alexandrov et al., 2006
	Oryza sativa (Japonica)	EAZ24186	222	MECDP_S	Yu <i>et al.</i> , 2005
	Oryza sativa (Indica)	EAY87077	222	MECDP_S	Yu <i>et al.</i> , 2005
	Taxus x media	ABB88956	247	mecs	Jin <i>et al.</i> , 2006
4-Hydroxy-3-methylbut2-en-yl-	Nicotiana benthamiana	AAS75817	268	gcpE/ispG	Page <i>et al.</i> , 2003
diphosphate synthase (HDS, EC, 1.17.4.3)	Oryza sativa (Japonica)	AAO72576	608	gcpE	Cooper <i>et al.</i> , 2003
1-Hydroxy-2-methyl-butenyl	Arabidopsis thaliana	AAW82381	468	HDR/ISPH	Guevara-Garcia et al., 2005
4-diphosphate reductase (HDR, EC 1.17.1.2) Or, 4-hydroxy-3- methylbut-2-enyl diphosphate reductase	Nicotiana benthamiana	AAS75818	166	ispH LytB	Page <i>et al.</i> , 2003

References

- Adam, K.P. and Zapp, J. (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry *48*, 953–959.
- Alexandrov, N.N., Troukhan. M.E., Brover, V.V., Tatarinova, T., Flavell, R.B., and Feldmann, K.A. (2006) Features of Arabidopsis genes and genome discovered using fulllength cDNAs. Plant Mol. Biol. 60, 71–87, 2006.
- Arigoni, D., Eisenreich, W., Latzel, C., Sagner, S., Radykewicz, T., Zenk, M.H., and Bacher, A. (1999) Dimethylallyl pyrophosphate is not the committed precursor of isopentenyl pyrophosphate during terpenoid biosynthesis from 1-deoxyxylulose in higher plants. Proc. Natl. Acad. Sci. U.S.A. 96, 1309–1314.
- Arigoni, D., Sagner, S., Latzel, C., Eisenreich, W., Bacher, A., and Zenk, M.H. (1997) Terpenoid biosynthesis from 1-deoxy-Dxylulose in higher plants by intramolecular skeletal rearrangement. Proc. Natl. Acad. Sci. U.S.A. 94, 10600–10605.
- Bacher, A., Rieder, C., Eichinger, D., Arigoni, D., Fuchs, G., Eisenreich, W. (1998) Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis. FEMS Microbiol. Rev. 22, 567–598.
- Barlowa, A.J., Lorimer, S.D., Morgan, E.R., and Weavers, R.T. (2003) Biosynthesis of the sesquiterpene hodgsonox from the New Zealand liverwort *Lepidolaena hodgsoniae*. Phytochemistry 63, 25–29.
- Bouvier, F., d'Harlingue, A., Suire, C., Backhaus, R.A., and Camara, B. (1998) Dedicated roles of plastid transketolases during the early onset of isoprenoid

biogenesis in pepper fruits. Plant Physiol. 117, 1423–1431.

- Campos, N., Lois, L.M., and Boronat, A. (1997) Nucleotide sequence of a rice cDNA encoding a transketolase-like protein homologous to the Arabidopsis CLA1 gene product. Plant Physiol. *115*, 1289–1293.
- Chahed, K., Oudin, A., Guivarch, N., Hamdi, S., Chenieux, J.C., Rideau, M., and Clastre, M. (2000) 1-Deoxy-D-xylulose 5-phosphate synthase from periwinkle: cDNA identification and induced gene expression in terpenoidindole alkaloid-producing cells. Plant Physiol. Biochem. *38*, 559–566.
- Chemler, J.A., Yan, Y., and Koffas, M.K.G. (2006) Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in *Saccharomyces cerevisiae*. Microb. Cell Fact. *5*, 20–30.
- Cheng, A.X., Lou, Y.G., Mao,Y.B., Lu, S., Wang, L.J., and Chen, X.Y. (2007) Plant Terpenoids: Biosynthesis and Ecological Functions. J. Integrative Plant Biol. *49*, 179–186.
- Contin, A., Vander-Heijden, R., Lefeber, A.W.M., and Verpoorte, R. (1998) The iridoid glucoside secologanin is derived from the novel triose-phosphate/pyruvate pathway in *Catharanthus roseus* cell culture. FEBS Lett. *434*, 413–416.
- Cooper, B., Clarke, J., Budworth, P., Kreps, J., Hutchison, D., Park, S., Guimil, S., Dunn, M., Luginbuhl, P., Ellero, C., Goff, S.A., and Glazebrook, J. (2003) A network of rice genes associated with stress response and seed development. Proc. Natl. Acad. Sci. U.S.A. 100, 4945– 4950.

i42 Ganjewala et al.

Table 4: Overall distribution of MEP pathway genes in plants.

	MEP pathway genes							
Plants	dxs	yaeM/dxr	ygbP/mect/ispD	ychB/cmek/ispE	ygbB/mecs	gcpE/ispG	hdr/ ispH	Hmgr
Arabidopsis thaliana	+	+	+	+	+	+	+	+
Andrographis paniculata	+	-	-	-	-	-	-	+
Antirrhinum majus	+	+	-	-	-	-	-	-
Artemisia annua	+	+	-	-	-	-	-	+
Catharanthus roseus	+	+	-	-	+	-	-	+
Camptotheca acuminate		+						+
Cistus incanus subsp. creticus		+						+
Chrysanthemum x morifolium	+	+	-	-	-	-	-	-
Citrus jambhiri						+		?
Croton stellatopilosus	+	+	-	-	-	-	-	-
Elaeis guineensis	+	+	-	-	-	-	-	-
Forsythia x intermedia	+	+	-	+	-	-	+	-
Ginkgo biloba	+	+	+	+	-	-	+	+
Hevea brasiliensis	+	+	-		-	+	-	+
Hordeum vulgare		+						-
Linum usitatissimum		+						-
Lycopersicon esculentum	+	+	-	+	+	-	-	+
Lycopersicon hirsutum	+	-	-	+	-	-	-	-
Mentha x piperita	+	+	-	+	-	-	-	-
Medicago truncatula	+	-	-	-	-	-	-	+
Mesostigma viride				+			+	?
Morinda citrifolia	+	-	-	-	-	-	-	-
Narcissus pseudonarcissus	+	-	-	-	-	-	-	-
Nicotiana benthamiana				+	+		+	-
Nicotiana tabacum		+						+
Oryza sativa (Japonica)	+	+	+	+	+	+	+	+
Oryza sativa (Indiaca)	+	+	+	-	-	+	-	+
Picrorhiza kurrooa		+		+				+
Plectranthus barbatus		+						-
Pueraria montana var. lobata	+	+	-	-	-	-	-	-
Rauvolfia verticillata		+		+				-
Salvia miltiorrhiza		+	+	+				+
Stevia rebaudiana	+	+	+	+	+	+	-	-
Tagetes erecta	+	+	-	-	-	-	-	+
Taxus chinensis		+						-
Taxus cuspidate		+						-
Taxus x media	+	+	-	-	-	+	-	+
Vitis Vinifera			+					+
Zea mays	+	+	-	-	+	-	-	+

dxs: 1-deoxy-D-xylulose 5-phosphate synthase; *dxr*: 1-deoxy-D-xylulose 5-phosphate reductase; *ispD*: 4-diphosphocytidyl2C-methyl-D-erythritol synthase; *ispE*: 4-diphosphocytidyl 2C-methyl-D-erythritol kinase; *mecs*; 2C-methyl-D-erythritol 2,4-cyclodiphosphatesynthase; *ispG*: 1-hydroxy-2-methyl-2-(*E*)butenyl 4-diphosphate synthase; *ispH*: 1-hydroxy-2-methyl-2-(*E*)-butenyl 4-diphosphate reductase; *hmgr*: 3-hydroxy-3-methylglutaryl-CoA reductase.

- Cragg, G.M., Newman, D.J., and Snader, K.M. (1997) Natural products in drug discovery and development. J. Nat. Prod. *60*, 52–60.
- Dhingra, V., Rao, K.V., and Narasu, M.L. (2000) Current status of artemisinin and its derivatives as antimalaria drugs. Life Sci. *66*, 279–300.
- Croteau, R. (1987) Biosynthesis and catabolism of monoterpenoids. Chem. Rev. 87, 929–954.
- Dixon. R.A. (2001) Natural products and plant disease resistance. Nature *411*, 843–847.

- Dubey, V.S., Bhalla, R., and Luthra, R. (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J. Biosciences *28*, 637–646.
- Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichel, M., Rhodes, D., Boland, W., and Gershenzon, J. (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc. Natl. Acad. Sci. U.S.A. 102, 933–938.
- Eichinger, D., Bacher, A., Zenk, M.H., and Eisenreich, W. (1999) Analysis of metabolic pathways via quantitative prediction of isotope labeling patterns: a retrobiosynthetic ¹³C NMR study on the monoterpene loganin. Phytochemistry *51*, 223–226.
- Eisenreich, W., Menhard, B., Hylands, P.J., Zenk, M.H., and Bacher, A. (1996) Studies on the biosynthesis of taxol: The taxane carbon skeleton is not of mevalonoid origin. Proc. Natl. Acad. Sci. U.S.A. *93*, 6431–6436.
- Eisenreich, W., Rohdich, F., and Bacher, A. (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6, 78–84.
- Eisenreich, W., Sagner, S., Zenk, M.H., and Bacher, A. (1997) Monoterpenoid essential oils are not of mevalonoid origin. Tetrahedron Lett. 38, 3889–389.
- Eisenreicha, W., Bachera, A., Arigonib, D., and Rohdicha, F. (2004) Biosynthesis of isoprenoids *via* the nonmevalonate pathway. Cell Mol. Life Sci. *61*, 1401– 1426.
- Engprasert, S., Shoyama, Y., and Taura, F. (2005) Molecular cloning, expression and characterization of recombinant 1-deoxy-D-xylulose-5-phosphate reductoisomerase from *Coleus forskohlii* Brig. Plant Sci. *169*, 287–294.
- Fellermeier, M., Kis, K., Sagner, S., Maier, U., Bacher, A., and Zenk, M.H. (1999) Cell-free conversion of 1-deoxy-D-xylulose 5-phosphate and 2-C-methyl-D-erythritol 4-phosphate into β -carotene in higher plants and its inhibition by fosmidomycin. Tetrahedron Lett. 40, 2743– 2746.
- Fowler, D.J., Hamilton, J.T.G., Humphrey, A.J., and O'Hagan, D. (1999) Plant Terpene Biosynthesis. The Biosynthesis of Linalyl Acetate in *Mentha citrate*. Tetrahedron Lett. *40*, 3803–3806.
- Gao, S., Lin, J., Liu, X., Deng, Z., Li, Y., Sun, X., and Tang, K. (2006) Molecular Cloning, Characterization and Functional Analysis of a 2C-methyl-D-erythritol 2,4-cyclodiphosphate Synthase Gene from *Ginkgo biloba*. J. Biochem. Mol. Biol. 39, 502–510.
- Gong, Y., Liao, Z., Chen, M., Zuo, K., Guo, L., Tan, Q., Huang, Z., Kai, G., Sun, X., Tan, F., and Tang, K. (2005) Molecular cloning and characterization of a 1-deoxyp-xylulose 5-phosphate reductoisomerase gene from *Ginkgo biloba*. DNA Seq. *16*, 111–120.
- Gong, Y.F., Liao, Z.H., Guo, B.H., Sun, X.F., and Tang, K.X. (2006) Molecular cloning and expression profile analysis of *Ginkgo biloba* DXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Planta Med. *72*, 329–335.
- Guevara-Garcia, A., San Roman, C., Arroyo, A., Cortes, M.E., de la Luz Gutierrez-Nava, M., and Leon, P. (2005) Characterization of the Arabidopsis clb6

mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. Plant Cell *17*, 628–643.

- Han, Y.S., Roytrakul, S., Verberne, M.C., van der Heijden, R., Linthorst, H.J.M., and Verpoorte, R. (2003) Cloning of a cDNA encoding 1-deoxy-D-xylulose 5-phosphate synthase from *Morinda citrifolia* and analysis of its expression in relation to anthraquinone accumulation. Plant Sci. *164*, 911–917.
- Hans, J., Hause, B., Strack, D., and Walter, M.H. (2004) Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-D-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiol.134, 614–624.
- Harborne, J.B. (2001) Twenty-five years of chemical ecology. Nat. Prod. Rep. *18*, 361–379.
- Hertewich, U., Zapp, J., Becker, H., and Adam, K.P. (2001) Biosynthesis of a hopane triterpene and three diterpenes in the liverwort *Fossombronia alaskana*. Phytochemistry 7, 1049–1054.
- Hirai, N., Yoshida, R., Todoroki, Y., and Ohigashi, H. (2000) Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci. Biotechnol. Biochem. *64*, 1448–1458.
- Jeffrey, F.M., Rajagopal, A., Malloy, C.R., and Sherry, A.D. (1991) ¹³C-NMR: a simple yet comprehensive method for analysis of intermediary metabolism. Trends Biochem. Sci. *6*, 5–10.
- Jennewein, S., Wildung, M.R., Chau, M., Walker, K., and Croteau, R. (2004) Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc. Natl. Acad. Sci. U.S.A. *101*, 9149–9154.
- Jin, H., Gong, Y., Guo, B., Qiu, C., Liu, D., Miao, Z., Sun, X., and Tang, K. (2006) Isolation and characterization of a 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase gene from *Taxus media*. Mol. Biol. (N.Y.) 40, 914–921.
- Kelleher, J.K. (2001) Flux estimation using isotopic tracers: common ground for metabolic physiology and metabolic engineering. Metab. Eng. *3*, 100–110.
- Khemvong, S., and Suvachittanont, W. (2005) Molecular cloning and expression of a cDNA encoding 1-deoxy-Dxylulose-5-phosphate synthase from oil palm in Elaeis guineensis Jacq. Plant Sci. *169*, 571–578.
- Kim, S.M., Kuzuyama, T., Chang, Y.J., Kwon, H.J., and Kim, S.U. (2006) Cloning and functional characterization of 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (GbMECT) gene from *Ginkgo biloba*. Phytochemistry 67, 1435–1441.
- Kishimoto, S., and Ohmiya, A. (2006) Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (*Chrysanthemum morifolium*) Physiol. Plantarum. *128*, 436–447.
- Klink, J.W., Becker, H., and Perry, N.B. (2005) Biosynthesis of irregular diterpenes in *Anisotome layallii* by head to tail coupling of geranyl diphosphate. Org. Biol. Chem. *3*, 542–545.
- Knoss, W., Reuter, B., and Zapp, J. (1997) Biosynthesis of the labdane diterpenoid marrubin in *Marrubium vulgare* via a nonmevalonate pathway. Biochem. J. *326*, 449–454.

- Lange, B.M., and Croteau, R. (1999) Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxy-p-xylulose-5-phosphate reductoisomerase from peppermint. Arch. Biochem. Biophys. *365*, 170– 174.
- Lange, B.M., and Croteau, R. (1999) Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: isopentenyl monophosphate kinase catalyzes the terminal enzymatic step. Proc. Natl. Acad. Sci. U.S.A. *96*, 13714–13719.
- Leite, A.C., Lopes, A.A., Kato, M.J., Bolzania, V.S., and Furlan, M., (2007) Biosynthetic Origin of the Isoprene Units in Chromenes of *Piper aduncum* (Piperaceae) J. Braz. Chem. Soc. *18*, 1500–1503.
- Liao, Z., Chen, R., Chen, M., Yang, C., Wang, Q., and Gong, Y. (2007) A new 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene encoding the committed-step enzyme in the MEP pathway from *Rauvolfia verticillata*. Z. Naturforsch C. J. Biosci. *62*, 296–304.
- Lichtenthaler, H.K. (2001) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem. Soc. Transact. *28*, 785–789.
- Lichtenthaler, H.K., Schwender, J., Disch, A., and Rohmer, M. (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds *via* a mevalonate-independent pathway. FEBS Lett. *400*, 271–274.
- Lichtenthaler, H.K. (1999) The 1-deoxy-D-xylulose-5phosphate pathway of isoprenoid biosynthesis in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. *50*, 47–65.
- Lichtenthaler, H.K., Zeidler, J., Schwender, J., and Muller, C. (2000) The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite. Z. Naturforsch. *55*, 305–313.
- Lin, X., and Kaul, S. (1999) Sequence and analysis of chromosome 2 of the plant *Arabidopsis thaliana*. Nature *402*, 761–768.
- Lois, L.M., Rodriguez-Concepcion, M., Gallego, F., Campos, N., and Boronat, A. (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J. 22, 503–513.
- Luan, F., and Wust, M. (2002) Differential incorporation of 1-deoxy-D-xylulose into (3S)-linalool and geraniol in grape berry exocarp and mesocarp. Phytochemistry *60*, 451–459.
- Maier, W., Schneider, B., and Strack, D. (1998) Biosynthesis of sesquiterpenoid cyclohexane derivatives in mycorrhizal barley roots proceeds via the glyceraldehydes-3-phosphate/pyruvate pathway. Tetrahedron Lett. *39*, 521–524.
- Milborrow, B.V., and Lee, H.S. (1998) Endogenous biosynthetic precursors of (+) abscisic acid. VI. Carotenoids and abscisic acid formed by the non-mevalonate triose-pyruvate pathway in chloroplasts. Aust. J. Plant. Physiol. *25*, 507–512.
- Moehs, C.P., Tian, L., Osteryoung, K.W., and Dellapenna, D. (2001) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol. Biol. 45, 281–293.

- Ohyanagi, H., Tanaka, T., Sakai, H., Shigemoto, Y., Yamaguchi, K., Habara, T., Fujii, Y., Antonio, B.A., Nagamura, Y., Imanishi, T., Ikeo, K., Itoh, T., Gojobori, T., and Sasaki, T. (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res. *34*, D741-D744.
- Page, J.E., Hause, G., Raschke, M., Gao, W., Schmidt, J., Zenk, M.H., and Kutchan, T.M. (2004) Functional Analysis of the Final Steps of the 1-Deoxy-D-xylulose 5-phosphate (DXP) Pathway to Isoprenoids in Plants Using Virus-Induced Gene Silencing. Plant Physiol. *134*, 1401–1413.
- Phillips, M.A., Walter, M.H., Ralph, S.G., Dabrowska, P., Luck, K., Uros, E.M., Boland, W., Strack, D., Rodriguez-Concepcion, M., Bohlmann, J., and Gershenzon, J. (2007) Functional identification and differential expression of 1-deoxy-D-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (*Picea abies*) Plant Mol. Biol. 65, 243–257.
- Rieder, C.H., Jaun, B., and Arigoni, D. (2000) On the early steps of cineol biosynthesis in *Eucalyptus globules*. Helv. Chim. Acta. 83, 2504–2513.
- Rodriguez-Concepcion, M., Ahumada, I., Diez-Juez, E., Sauret-Gueto, S., Lois, L.M., Gallego, F., Carretero-Paulet, L., Campos, N., and Boronat, A. (2001) 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J. *27*, 213–222.
- Rodriguez-Concepcion, M., and Boronat, A. (2002) Elucidation of the Methylerythritol Phosphate Pathway for Isoprenoid Biosynthesis in Bacteria and Plastids. A Metabolic Milestone Achieved through Genomics. Plant Physiol. *130*, 1079–1089.
- Rohdich, F., Wungsintaweekul, J., Luttgen, H., Fischer, M., Eisenreich, W., Schuhr, C.A., Fellermeier, M., Schramek, N., Zenk, M.H., and Bacher, A. (2000)
 Biosynthesis of terpenoids: 4-diphosphocytidyl-2-Cmethyl-p-erythritol kinase from tomato. Proc. Natl. Acad. Sci. U.S.A. 97, 8251–8256.
- Rohmer, M. (2003) Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl. Chem. 75, 375–387.
- Rohmer, M. (1999) The discovery of a mevalonate independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. *16*, 565–574.
- Sagner, S., Eisenreich, W., Fellermeier, M., Latzel, C., Bacher, A., and Zenk, M.H. (1998) Biosynthesis of 2-C-methyl-D-erythritol in plants by rearrangement of the terpenoid precursor, 1-deoxy-D-xylulose-5phosphate. Tetrahedron Lett. *39*, 2091–2094.
- Sasaki, T., and Matsumoto, T. (2002) The genome sequence and structure of rice chromosome 1. Nature 420, 312–316.
- Sato, S., Nakamura, Y., Kaneko, T., Katoh, T., Asamizu, E., and Tabata, S. (2000) Structural analysis of *Arabidopsis thaliana* chromosome 3. I. Sequence features of the regions of *4*, *504*, 864 bp covered by sixty P1 and TAC clones. DNA Res. 7, 131–135.

- Schwender, J., Muller, C., Zeidler, J., and Lichtenthaler, H.K. (1999) Cloning and heterologous expression of a cDNA encoding 1-deoxy-p-xylulose-5-phosphate reductoisomerase of *Arabidopsis thaliana*. FEBS Lett. 455, 140–144.
- Scolink, P.A. and Bartley, G.E. (1996) A table of cloned genes involved in Isoprenoid biosynthesis. Plant Mol. Biol. Report *14*, 305–319.
- Seetang-Nun, Y., Sharkey, T.D., and Suvachittanont, W. (2008) Isolation and characterization of two distinct classes of DXS genes in *Hevea brasiliensis*. DNA Seq. *19*, 291–300.
- Seetang-Nun, Y., Sharkey, T.D., and Suvachittanont, W. (2008) Molecular cloning and characterization of two cDNAs encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase from *Hevea brasiliensis*. J. Plant Physiol. *165*, 991–1002.
- Seki, M., Iida, K., Satou, M., Sakurai, T., Akiyama, K., Ishida, J., Nakajima, M., Enju, A., Kamiya, A., Narusaka, M., Carninci, P., Kawai,J., Hayashizaki,Y., and Shinozaki, K. (2002). *Arabidopsis thaliana* full-length cDNA. Published Only in Database. http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi.
- Sharkey, T.D., Yeh, S., Wiberley, A.E., Falbel, T.G., Gong, D., and Fernandez, D.E. (2005) Evolution of the Isoprene Biosynthetic Pathway in Kudzu. Plant Physiol. *137*, 700–712.
- Sprenger G.A. (1996) Carbohydrate metabolism in *Zymomonas mobilis*: a catabolic highway with some scenic routes. FEMS Microbiol. Lett. *145*, 301–307.
- Steliopoulos, P., Wust, M., Adam, K.P., and Mosandl, A. (2002) Biosynthesis of the sesquiterpene germacrene D in *Solidago canadensis*: 13C and 2H lebelling studies. Phytochemistry *60*, 13–20.
- Thiel, R., and Adam, K.P. (2002) Incorporation of [1–13C]1-deoxy-D-xylulose into isoprenoids of the liverwort *Conocephalum conicum*. Phytochemistry *59*, 269–274.
- Totte, N.M.L.C., Van den Ende, W., Van Damme, E.J.M., Compernolle, F., Baboeuf, I., and Geuns, J.M.C. (2003) Cloning and heterologous expression

of early genes in gibberellin and steviol biosynthesis via the methylerythritol phosphate pathway in *Stevia rebaudiana*. Plant Physiol. *81*, 517–522.

- Veau, B., Courtois, M., Oudin, A., Chenieux, J.C., Rideau, M., and Clastre, M. (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in *Catharanthus roseus*. Biochem. Bioph. Acta. *1517*, 159–163.
- Verpoorte, R., and Memelink, J. (2002) Engineering secondary metabolite production in plants. Curr. Opin. Biotechnol. *13*, 181–187.
- Wu, S.J., Shi, M., and Wu, J.Y. (2009) Cloning and characterization of 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis in *Salvia miltiorrhiza* hairy roots. Biotechnol. Appl. Biochem. *52*, 89–95.
- Wungsintaweekul, J., Sirisuntipong, T., Kongduang, D., Losuphanporn, T., Ounaroon, A., Tansakul, P., and De-Eknamkul, W. (2008) Transcription profiles analysis of genes encoding 1-deoxy-D-xylulose 5-phosphate synthase and 2C-methyl-D-erythritol 4-phosphate synthase in plaunotol biosynthesis from *Croton stellatopilosus*. Biol. Pharm. Bull. *31*, 852–856.
- Yao, H., Gong, Y., Zuo, K., Ling, H., Qiu, C., Zhang, F., Wang, Y., Pi, Y., Liu, X., Sun, X., and Tang, K. (2008)
 Molecular cloning, expression profiling and functional analysis of a DXR gene encoding 1-deoxy-D-xylulose
 5 phosphate reductoisomerase from *Camptotheca acuminate*. J. Plant Physiol. *165*, 203–213.
- Yu, J., Wang, J., Lin, W., Li, S., and Li, H. (2005) The Genomes of *Oryza sativa*: A History of Duplications. PLoS. Biol. *3*, E38-E42.
- Zeidler, J.G., Lichtenthaler, H.K., May, H.U., and Lichtenthaler, F.W. (1997) Is isoprene emitted by plants synthesized via a novel isopentenyl pyrophosphate pathway? Z. Naturforsch. *52C*, 15–23.
- Zeidler, J.G., Schwender, J., Muller, C., Wiesner, J., Weidemeyer, C., Beck, E., Jomaa, H., and Lichtenthaler, H.K. (1998) Inhibition of the non-mevalonate 1-deoxyp-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z. Naturforsch. 53C, 980–986.

Further Reading

Caister Academic Press is a leading academic publisher of advanced texts in microbiology, molecular biology and medical research. Full details of all our publications at **caister.com**

- MALDI-TOF Mass Spectrometry in Microbiology Edited by: M Kostrzewa, S Schubert (2016) www.caister.com/malditof
- Aspergillus and Penicillium in the Post-genomic Era Edited by: RP Vries, IB Gelber, MR Andersen (2016) www.caister.com/aspergillus2
- The Bacteriocins: Current Knowledge and Future Prospects Edited by: RL Dorit, SM Roy, MA Riley (2016) www.cajster.com/bacteriocins
- Omics in Plant Disease Resistance Edited by: V Bhadauria (2016) www.caister.com/opdr
- Acidophiles: Life in Extremely Acidic Environments Edited by: R Quatrini, DB Johnson (2016) www.caister.com/acidophiles
- Climate Change and Microbial Ecology: Current Research and Future Trends Edited by: J Marxsen (2016) www.caister.com/climate
- Biofilms in Bioremediation: Current Research and Emerging Technologies Edited by: G Lear (2016) www.caister.com/biorem
- Microalgae: Current Research and Applications Edited by: MN Tsaloglou (2016) www.caister.com/microalgae
- Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives Edited by: H Shintani, A Sakudo (2016) www.caister.com/gasplasma
- Virus Evolution: Current Research and Future Directions Edited by: SC Weaver, M Denison, M Roossinck, et al. (2016) www.caister.com/virusevol
- Arboviruses: Molecular Biology, Evolution and Control Edited by: N Vasilakis, DJ Gubler (2016) www.caister.com/arbo
- Shigella: Molecular and Cellular Biology Edited by: WD Picking, WL Picking (2016) www.caister.com/shigella
- Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
 Edited by: AM Romaní, H Guasch, MD Balaguer (2016)
 www.caister.com/aquaticbiofilms
- Alphaviruses: Current Biology Edited by: S Mahalingam, L Herrero, B Herring (2016) www.caister.com/alpha
- Thermophilic Microorganisms Edited by: F Li (2015) www.caister.com/thermophile

Climate Change and

- Flow Cytometry in Microbiology: Technology and Applications Edited by: MG Wilkinson (2015) www.caister.com/flow
- Probiotics and Prebiotics: Current Research and Future Trends Edited by: K Venema, AP Carmo (2015) www.caister.com/probiotics
- Epigenetics: Current Research and Emerging Trends Edited by: BP Chadwick (2015) www.caister.com/epigenetics2015
- Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications Edited by: A Burkovski (2015) www.caister.com/cory2
- Advanced Vaccine Research Methods for the Decade of Vaccines Edited by: F Bagnoli, R Rappuoli (2015) www.caister.com/vaccines
- Antifungals: From Genomics to Resistance and the Development of Novel Agents Edited by: AT Coste, P Vandeputte (2015) www.caister.com/antifungals
- Bacteria-Plant Interactions: Advanced Research and Future Trends Edited by: J Murillo, BA Vinatzer, RW Jackson, et al. (2015) www.caister.com/bacteria-plant
- Aeromonas
 Edited by: J Graf (2015)
 www.caister.com/aeromonas
- Antibiotics: Current Innovations and Future Trends Edited by: S Sánchez, AL Demain (2015) www.caister.com/antibiotics
- Leishmania: Current Biology and Control Edited by: S Adak, R Datta (2015) www.caister.com/leish2
- Acanthamoeba: Biology and Pathogenesis (2nd edition) Author: NA Khan (2015) www.caister.com/acanthamoeba2
- Microarrays: Current Technology, Innovations and Applications Edited by: Z He (2014) www.caister.com/microarrays2
- Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications Edited by: D Marco (2014) www.caister.com/n2