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Abstract:

Isoprenoids, also known as terpenoids, are biosynthesized 
by the condensation of the two C5 unit isopentenyl 
diphosphate (IPP) and isomer dimethylallyl diphosphate 
(DMAPP). Generally, plants use two separate pathways 
plastidial Methyl-erythritol-4-phosphate (MEP) and 
cytosolic acetate-mevalonate (MVA) pathways for 
formation of IPP. The genes, enzymes and intermediates 
of the MEP pathway have been unravelled in plants over 
the past few years. Interestingly, MEP pathway enzymes 
are encoded by nuclear genes but they function in plastids 
to produce precursors for isoprenes, monoterpenes, 
carotenoids, abscisic acid, gibberellins, and the side 
chain of chlorophylls, tocopherols, phylloquinones, and 
plastoquinone. In Arabidopsis thaliana, a complete set of 
genes of MEP pathway homologous to the E. coli MEP 
pathway genes have been identified. Although, these 
genes have been cloned and characterized from several 
other plants but overall information about them at one 
place is not available so far. Though, a range of reviews 
are available about their roles in isoprenoid biosynthesis 
and regulation. Therefore, we decided to compile the data 
on cloned and characterized genes of MEP pathway in 
plants. Also, we summarize the results of the previously 
published reports, particularly those which were based on 
incorporation of 13C-glucose or by application of specific 
inhibitors such as mevinolin and fosmidomycin to look 
into the MEP pathway in plants. In addition, we searched 
for the two key enzymes DXS and HMGR that could be 
assigned for the acetate-MVA and MEP pathway with the 
help of bioinformatics tools. Presence or absence of these 
enzymes can be correlated with respective isoprenoid 
biosynthetic pathways in plants.

Keywords: Isoprenoids; Methyl-erythritol-4-phosphate 
(MEP); Acetate-MVA pathway; Hydroxyl-methylglutaryl-
CoA reductase (HMGR); 1-deoxy-D-xylulose 5-phosphate 
synthase (DXPS or DXS).

Introduction

Plant secondary metabolites viz., isoprenoids have 
always been fascinating for the researchers. Obviously, 
they are the largest and most diverse class of plant 
secondary metabolites (Dubey et al., 2003). Over the 
years isoprenoids have been exhaustively investigated. 
There are many research papers, reviews, commentaries 
and books are available covering various aspects 
of isoprenoids viz., biosynthesis and regulation and 
functions in plants and microorganisms (Croteau, 1987; 
Rohmer, 1999; 2003; Lichtenthaler, 1999; Lichtenthaler, 
2001; Eisenreich et al., 1997; 2001; 2004; Rodrıguez-
Concepcion and Boronat, 2002; Chemler et al., 2006; 
Cheng et al., 2007). Isoprenoids are multifunctional; they 
play very important roles in membrane structure, redox 
reactions, light harvesting and photo-protection, and 
regulations of growth and development. They not only 
perform various roles in the plant’s life such as, plant-
environment, plant–insect, plant–microorganism and 
plant–plant interactions but they became an essential part 
of our life as medicines, flavours, fragrances, cosmetics, 
dyes, insecticides and more (Verpoorte et al., 2002; 
Harborne, 2001; Dixon, 2001). Currently, isoprenoids are 
being used as anti-cancer and antimicrobial drugs for 
example artimicinin as a powerful antimalarial (Dhingra 
et al., 2000) and taxol as anti-cancer (Cragg et al., 1997) 
agents.

Despite the great deal of structural and functional 
diversity all isoprenoids are synthesized by consecutive 
condensation of common C5 isoprene precursor; 
isopentenyl diphosphate (IPP) and its isomer dimethylallyl 
diphosphate (DMAPP). IPP therefore is regarded as the 
universal precursor of all the isoprenoids. IPP, in turn is 
biosynthesized in two different sites via two separate 
and independent biochemical pathways: 1. Cytosolic 
acetate-MVA pathway and 2. Plastidial Methylerythritol 
4- phosphate (MEP) also called as 1-deoxy-D-
xylulose 5-phosphate (DOXP) or glyceraldehyde-3-
phosphate-pyruvate (GAP-Pyruvate) pathway (Fig. 1). 
In the present article, the pathway is described as MEP 
pathway. In general, acetate-MVA pathway produces 
sesquiterpenes and triterpenes while MEP pathway 
produces monoterpenes, sesquiterpenes, diterpenes, 
tetraterpenes, plastoquinone and prenyl side chains of 
chlorophyll.

In brief, MEP pathway (Fig. 1) begins with the 
formation of 1-deoxy-D-xylulose 5-phosphate (DOXP/
DXP) by the condensation of pyruvate and glyceraldehyde 
3-phosphate catalysed by DOXP synthase (DXS, 

An Account of Cloned Genes of Methyl-erythritol-4-

phosphate Pathway of Isoprenoid Biosynthesis in 

Plants

*For correspondence: deepakganjawala73@yahoo.com
Tel: +91-416-2243093; Fax: +91-416-2243091
Cell: +91-99945-47146



i36 Ganjewala et al.

Fig. 1. MEP pathway for the biosynthesis of isoprenoids in plants. ABA, abscisic acid; CDP-ME, 4-(cytidine-5’-diphospho)-2-C-methyl-D-Erythritol; 
CDP-MEP, 4-Diphosphocytidyl-2C-methyl-D-erythritol 4-phosphate; DMAPP, dimethylallyl diphosphate; DXP, 1-deoxy-D-xylulose 5-phosphate; GAP, 
glyceraldehyde 3-phosphate; GGPP, geranylgeranyl diphosphate; GPP, geranyl diphosphate; HBMPP, 4-hydroxy-3-methylbut-2-enyl diphosphate; IPP, 
isopentenyl diphosphate; ME-cPP, 2C-methyl-D-erythritol 2,4-cyclodiphosphate; MEP, 2C-methylerythritol 4-phosphate. Enzymes are indicated in 
bold italic; 4-(cytidine-5’-diphospho)-2-C-methyl-D-Erythritol kinase (CMK, EC 2.7.1.148); 4-Diphosphocytidyl-2C-methyl-D-erythritol 4-phosphate synthase 
(CMS, EC 2.7.7.60); 1-deoxy-D-xylulose 5-phosphate reductoisomerase (EC 1.1.1.267 ); 1-deoxy-D-xylulose 5-phosphate synthase (DXS, EC 4.1.3.37); 
4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR, EC 1.17.1.2 ) ; 4-Hydroxy-3-methylbut2-en-yl-diphosphate synthase (HDS, EC, 1.17.4.3); 
2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MCS, EC 4.6.1.12).
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(EC 4.1.3.37). DOXP then undergo intra-molecular 
rearrangement and reduction catalysed by 1-deoxy-
D-xylulose 5-phosphate reductoisomerase (DXR, 
EC 1.1.1.267) to yield methyl erythritol-4-phosphate 
(MEP) which is regarded as an immediate precursor of 
plastidic isoprenoids. MEP is consecutively converted 
into 4-diphosphocytidyl-methylerythritol (CDP-ME), 
4-diphosphocytidyl-methylerythritol (CDP-MEP) and 
methyl-erythritol 2,4-cyclodiphosphate (ME-cPP). These 
reactions are carried out by CDP-ME synthase (CMS, 
EC 2.7.7.60), CDP-ME kinase (CMK, EC 2.7.1.148) 
and ME-cPP synthase (MCS, EC 4.6.1.12). Methyl-
erythritol 2,4-cyclodiphosphate (ME-cPP) then converted 
to hydroxymethylbutenyl 4-diphosphate (HMBPP) by an 
enzyme hydroxymethylbutenyl 4-diphosphate synthase 
(HDS, EC 1.17.4.3). HMBPP is finally converted into 
a mixture of IPP and DMAPP by the enzyme HMBPP 
reductase (HDR, 1.17.1.2) (Eisenreich et al., 2001; 
2004).

At present, the genes encoding enzymes of MEP 
pathway with homology to the E. coli MEP pathway 
enzymes haven been identified from variety of plants 
including Arabdopsis thaliana (http://www.Arabidopsis.
org). The present review is aimed to provide the 
information on these cloned and characterized genes of 
MEP pathway in plants. Basically, the idea to compile the 
information on MEP pathway genes came from a very 
likely article on cloned genes of acetate-MVA pathway 
in plants by Scolink and Bartley (1996). The information 
about cloned genes of MEP pathway in one piece would 
be helpful to home in to isoprenoid biosynthesis. The 
results presented here were derived through online 
search and analysis (http://www.ncbi.nlm.nih.gov/; http://
www.tigr.org/). In addition, published literatures were 
also taken in account such as those describe application 
of 13C-glucose-Nuclear Magnetic Resonance (NMR) 
spectroscopy for elucidation of MEP pathway in plants. In 
addition, we took the help of bioinformatics tools to search 
DXS and HMGR, two key enzymes of their respective 
pathways to investigate these pathways in plants.

13C-glucose-NMR spectroscopy provides clues for 

the MEP pathway

The potential of using 13C-glucose-NMR spectroscopy 
to elucidate metabolic pathways in plants has long 
been recognized. Early efforts relied on NMR spectra 
of metabolites which were related to the underlying 
pathways used to create them (Jeffrey et al., 1991). NMR 
spectra have also been used to elucidate the flux through 
metabolic pathways (Bacher et al., 1998; Kelleher, 2001). 
The use of in vivo 13C-NMR spectroscopy to study the 
biosynthesis of secondary metabolites in plants has been 
well documented previously (see Table 2). Useful clues to 
the origin of the carbon atoms of isoprenoids in bacteria 
and for the elucidation of the MVA independent route were 
obtained from labeling experiments using 13C-glucose 
with Zymomonas mobilis, a facultative anaerobic and 
fermentative bacterium (Sprenger, 1996). The use of 
NMR spectroscopy in plant secondary metabolism has 
been hampered mainly because of very low concentration 
of the secondary metabolites, and the pathway leading 
to isoprenoid formation are often branched hence the 

13C-label of early precursors is diluted into several 
metabolites at the end. These difficulties in resolving the 
origin of Isoprenoid units could be overcome by NMR 
analysis of extracts or isolated compounds. To investigate 
the biosynthetic origin of isoprenoid building blocks 
of secondary metabolites, the pathway-independent 
precursor 13C-glucose, which produces distinctly different 
labelling patterns of the individual isoprene units for the 
MEP and MVA pathways is generally employed (Rohmer, 
1999). Given that glucose is a general intermediary 
metabolite, the isotope from the proffered carbohydrate 
can be diverted to virtually all metabolic compartments 
and intermediates in plant cells (Eisenreich et al., 2004).

The biosynthetic origin of a considerable number 
of primary and secondary plant terpenoids has been 
and currently being reinvestigated using 13C-glucose-
NMR spectroscopic technique in higher and lower 
plants (liverworts). Table 1 provides the information 
on application of 13C-NMR spectroscopy to elucidate 
the MEP pathway in plants. The data show that a wide 
variety of monoterpenes, diterpenes and sesquiterpenes 
(germacrene) are biosynthesized predominantly via the 
MEP pathway. Beside the analysis of these published 
reports on MEP pathways, our online database search for 
DXS and HMGR the key regulatory enzyme respectively 
of MEP and acetate-MVA pathways further provided the 
clue for the operation of either of these pathways in plants. 
Table 2 provides information on distribution of DXS and 
HMGR enzymes in plants. This information was collected 
online from http://www.ncbi.nlm.nih.gov/.

Cloned genes of MEP pathway

Our knowledge and understanding about the biosynthesis 
and regulation of isoprenoids in plants has been 
tremendously increased during the past two decades. As 
a result, genes encoding enzymes of the MEP pathway 
have been cloned and characterized from a several 
plants in the recent time. Though, several genes of the 
MEP pathway downstream from ispC were discovered 
by a strategy combining biochemical evidence with 
comparative genomic analysis. Please see a review by 
Eisenreich et al. (2004) for detailed description about 
the mechanism of action of enzymes of MEP pathway. 
Here in the Table 3 we provide information exclusive on 
cloned and characterized genes of the MEP pathway in 
plants. The information mainly comprises of GeneBank 
accession number, size and protein or gene name. Table 
3 shows that DXS and DXR have been cloned and 
characterized from a variety of plants while other enzymes 
of the MEP pathway could only be characterized only 
from a few plants. So far, HDS is known from only two 
plants Nicotiana benthamiana and Oryza sativa. Similarly 
HDR is also known from only two plants, Arabidopsis 
thaliana and N. benthamiana. An overall distribution of 
MEP genes in plants is presented in Table 4. From Table 
4, it is clear that A. thaliana and O. sativa (Japonica var.) 
genome has complete set of genes encoding enzymes of 
MEP pathway along with HMGR of acetate-MVA pathway. 
Stevia rebaudiana genome has shown at least six of the 
seven genes of MEP pathway, but lacks the HMGR of 
acetate-MVA pathway. Further analysis of the data has 
revealed that 19 out of 39 plants searched online have 
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genes of both MEP and acetate-MVA pathway in their 
genome, while the others 20 plants had exclusively genes 
of MEP pathway.

Conclusion

Many pathogenic microorganisms including 
Mycobacterium tuberculosis and Plasmodium falciparum 
also operate MEP pathway for the biosynthesis of 
isoprenoids. In fact, isoprenoids plays crucial role in 
the survival of P. falciparum in host cells. Knowledge of 
the MEP pathway in such pathogenic microorganism is 
currently being exploited for the development of structure-
based anti-microbial drugs by targeting the enzymes of 
MEP pathway. Therefore, details concerning the genes, 
enzymes and intermediates of the MEP pathway have 
become essential in achieving these goals. Currently, 
fosmidomycin an inhibitor of DOXP reductoisomerase 
(DXR) of MEP pathway has been successfully tested to 
hang-up isoprenoid biosynthesis in P. falciparum. Similar 
strategies could be employed for the development of novel 
herbicides (Lichtenthaler et al., 2000). This aspect of the 

isoprenoids researches have a direct impact on human 
health, hence created much interest and awareness 
among the researchers in the recent years to look for 
new structure based drugs against more pathogenic 
microorganisms and weeds relying on MEP pathway. Our, 
knowledge and understanding about the plant secondary 
metabolite biosynthesis and regulation has greatly 
accelerated these efforts. Most certainly, comparative 
genomics and in combination of bioinformatics has been 
an aid.
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Table 1. MEP pathway in plants verified on the basis of 13C-glucose-NMR spectroscopy.

Plants Isoprenoids References

Catharanthus roseus Terpenoids
Iridoid glucoside secologanin

Arigoni et al., 1997; 1999; Contin et al., 1998

Chelidonium majus
Populus nigra
Salix viminalis

Isoprene Zeidler et al., 1997, 1998

Conocephalum conicum Isoprenoids Thiel et al., 2002

Dacus carota
Hordeum vulgare
Lemna gibba

L-carotene, lutein, prenyl chains of chlorophylls and plastoquinone-9 Lichtenthaler et al., 1997

Eucalyptus globules Cineol Rieder et al., 2000

Fossombronia alaskana Hopane triterpene and three diterpenes Hertewich et al., 2001

Hordeum vulgare sesquiterpenoid cyclohexane derivatives Maier et al., 1998

Liriodendron tulipifera Terpenes Sagner et al., 1998

Marrubium vulgare Labdane diterpenoid marrubin Knoss et al., 1997

Matricaria recutita Isoprene units of chamomile sesquiterpenes Adam and Zapp, 1998

Mentha citrate Linalyl Acetate monoterpene Fowler et al., 1999

Mentha pulegium Monoterpenes Eisenreich et al., 1997

Narcissus pseudonarcissus b-carotene Fellermeier et al., 1999

Pelargonium graveolens
Thymus vulgaris

Monoterpenes Eisenreich et al., 1997

Persea Americana Abscisic acid; Carotenoids and abscisic Hirai et al., 2000; Milborrow et al., 1998

Rauwolfia serpentine Monoterpene loganin Eichinger et al., 1996

Taxus chinensis Taxol (diterpene) Eisenreich et al., 1996

Trichcolea tometella Trichcolein and deoxytometellin (Hemi- and mono- terpene moieties 
and diterpene phytol)

Barlowa et al., 2003

Vitis Vinifera Linalool and geraniol Klink et al., 2005

Lepidolaena hodgsoniae Sesquiterpene hodgsonox Luan et al., 2002

Anisotome layallii Anisotomenes (bicyclic irregular diterpenes) Barlowa et al., 2003

Piper aduncum Isoprene Units in Chromenes Leite et al., 2007

Solidago Canadensis Germacrene D (sesquiterpenes) Steliopoulos et al., 2002
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Table 2. Results of online search for DXS and HMGR. DXS is assigned to MEP whereas HMGR to acetate-MVA pathway.

Plants

MEP Pathway
DOXP Synthase (DXS)

Acetate-Mevalonate Pathway
HMG-CoA Reductase (HMGR)

Accession No. Size Accession No. Size

Arabidopsis thaliana BAB02345 604 AAA67317 562

Antirrhinum majus AAW28999 733

Artemisia annua AAD56390 713 AAD47596 567

Andrographis paniculata AAP14353 691 AAP14352 556

Camptotheca acuminate AAB69726 575

Capsicum annuum CAA75778 719 AAD28179 604

Catharanthus roseus CAA09804 716 AAT52222 601

Cistus incanus subsp. creticus ABL10110 388

Chrysanthemum x morifolium BAE79547 669

Elaeis guineensis AAS99588 707

Ginkgo biloba AAS89341 717 AAU89123 571

Hevea brasiliensis AAS94123 720 CAA38467 575

Lycopersicon esculentum AAD38941 719 AAB62581 601

Lycopersicon hirsutum AAT97962 714

Mentha x piperita AAC33513 724

Medicago truncatula ABP03805 711 ABE88827 583

ABP03804 710

ABO82094 717

Morinda citrifolia AAL32062 722

Narcissus pseudonarcissus CAC08458 709

Nicotiana tabacum AAB87727 604

AAO85554 604

Oryza sativa (Japonica) NP_001055524 720 BAD10066 561

Oryza sativa (Indiaca) EAY98024 710 CAA92821 576

AAB88295 594

Pueraria montana var. lobata AAQ84169 717

Picrorhiza kurrooa ABC74565 561

Salvia miltiorrhiza ABB45812 174

AAU87798 267

Stevia rebaudiana CAD22155 715

Tagetes erecta AAG10432 725 AAC15475 574

Taxus cuspidate

Taxus x media AAS89342 742 AAQ82685 595

Zea mays ABP88134 719 CAA70440 579

ABP88135 705

AAX49359 481

AAX49358 424

Vitis Vinifera CAN71054 1638 CAN72217 575

DOXP: 1-deoxy-D-xylulose 5-phosphate; HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A.
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Table 3. Cloned and characterized enzymes of the MEP pathway in plants.

Enzyme Plant Accession numbers Size Protein / Gene Reference

1-deoxy-D-xylulose 5-phosphate 
synthase (DXS, EC 4.1.3.37)

Arabidopsis thaliana NP_001078570 565 DXPS3 Sato et al., 2000

NP_196699 700 DXPS3

NP_850620 629 DXPS1

BAB02345 604 DXS

Antirrhinum majus AAW28999 733 DXPS Dudareva et al., 2005

Capsicum annuum CAA75778.1 719 dxs put. Bouvier et al., 1996

Catharanthus roseus CAA09804 716 DXS Chahed et al., 1997

Chrysanthemum x morifolium BAE79547 669 DXS Kishimoto et al., 2006

Croton stellatopilosus BAF75640 720 dxs Wungsintaweekul et al., 2008

Elaeis guineensis AAS99588 707 dxs Khemvong et al., 2005

Ginkgo biloba AAS89341 711 Gong et al., 2006 

Hevea brasiliensis AAS94123 720 DXS Seetang-Nun et al., 2008a

ABF18929 711 DXS2

Lycopersicon esculentum AAD38941 719 dxs Lois et al., 2000 

Morinda citrifolia AAL32062 722 DXS Han et al., 2003

Oryza sativa (Japonica) NP_001055524 720 dxs Ohyanagi et al., 2006

Oryza sativa (Indiaca) AAB88295 594 CLA1 Campos et al., 1997

TC263109 DXS1 Kim et al., 2005

TC262788 DXS2

TC276717 DXS3

Picea abies ABS50520 746 DXS2B Phillips et al., 2007

ABS50519 740 DXS2A

ABS50518 717 DXS1

Stevia rebaudiana CAD22155 715 dxs Totte et al., 2003

Tagetes erecta AAG10432 725 dxs Moehs et al., 2001

1-deoxy-D-xylulose 5-phosphate 
reductase (DXR, EC 1.1.1.267 )

Arabidopsis thaliana CAB43344 406 dxr Schwender et al., 1999

Antirrhinum majus AAW28998 471 dxr Dudareva et al., 2005

Camptotheca acuminate ABC86579 472 Dxr Yao et al., 2008

Catharanthus roseus AAF65154 474 dxr Veau et al., 2000

Chrysanthemum x morifolium BAE79548 487 DXR Kishimoto et al., 2006

Ginkgo biloba AAR95700 477 Dxr Gong et al., 2005

Hevea brasiliensis AAS94121 471 DXR Seetang-Nun et al., 2008b

Hordeum vulgare CAE47438 484 dxr Hans et al., 2005

Lycopersicon esculentum AAK96063 475 DXR Rodriguez-Concepcion et al., 
2001

Mentha x piperita AAD24768 470 DXR Lange and Croteau, 1999

Oryza sativa (Japonica) NP_001041780 473 dxr Ohyanagi et al., 2006 

Oryza sativa (Indiaca) EAY72208 473 dxr Yu et al., 2005

Plectranthus barbatus AAR99081 469 dxr Engprasert et al., 2005

Pueraria montana var. lobata AAQ84168 465 dxr Sharkey et al., 2005

Rauvolfia verticillata AAY87151 474 DXR Wu et al., (in Press)

Salvia miltiorrhiza ABJ80680 474 DXR Liao et al., 2007

Stevia rebaudiana CAD22156 473 dxr Totte et al., 2003

Taxus cuspidate AAT47184 477 dxr Jennewein et al., 2004

Stevia rebaudiana CAD22156 473 dxr Totte et al., 2003

Taxus cuspidate AAT47184 477 dxr Jennewein et al., 2004
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Enzyme Plant Accession numbers Size Protein / Gene Reference

4-Diphosphocytidyl-2C-methyl-D-
erythritol 4-phosphate synthase 
(CMS, EC 2.7.7.60) 

Arabidopsis thaliana NP_565286 302 ISPD Seki et al., 2002

BAC42737 302 ispD

Ginkgo biloba AAZ80386 327 MECT Kim et al., 2005

Oryza sativa (Japonica) BAD82130 297 ispD put. Sasaki and Matsumoto, 2002; 
Yu et al., 2005

Oryza sativa (Indiaca) EAY76759 408 ispD pat.

4-(cytidine-5’-diphospho)-2-C-
methyl-D-Erythritol kinase (CMK, 
EC 2.7.1.148)

Arabidopsis thaliana O81014 383 ISPE Lin and Kaul, 1999

Lycopersicon esculentum AAF87717 401 ispE Lange and Croteau, 1999

Mentha x piperita P56848 405 ISPE Rohdich et al., 2000

Oryza sativa (Japonica) NP_001044544 401 ispE Ohyanagi et al., 2006

2C-methyl-D-erythritol 2,4-cyclodi-
phosphate synthase (MCS, EC 
4.6.1.12)

Arabidopsis thaliana AAM62786 231 MECDP_S Gao et al., 2006

Ginkgo biloba. AAY40863 239 Mecps Alexandrov et al., 2006

Oryza sativa (Japonica) EAZ24186 222 MECDP_S Yu et al., 2005

Oryza sativa (Indica) EAY87077 222 MECDP_S Yu et al., 2005

Taxus x media ABB88956 247 mecs Jin et al., 2006

4-Hydroxy-3-methylbut2-en-yl-
diphosphate synthase (HDS, EC, 
1.17.4.3)

Nicotiana benthamiana AAS75817 268 gcpE/ispG Page et al., 2003

Oryza sativa (Japonica) AAO72576 608 gcpE Cooper et al., 2003

1-Hydroxy-2-methyl-butenyl 
4-diphosphate reductase (HDR, 
EC 1.17.1.2 ) Or, 4-hydroxy-3-
methylbut-2-enyl diphosphate 
reductase 

Arabidopsis thaliana AAW82381 468 HDR/ISPH Guevara-Garcia et al., 2005

Nicotiana benthamiana AAS75818 166 ispH LytB Page et al., 2003
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