OspA, a Lipoprotein Antigen of the Obligate Intracellular Bacterial Pathogen *Piscirickettsia salmonis*

Michael A. Kuzyk¹, Ján Burian², Julian C. Thornton², and William W. Kay¹,²*

¹Canadian Bacterial Diseases Network, Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6
²Microtek International Ltd., 6761 Kirkpatrick Crescent, Saanichton, British Columbia, Canada, V8M 1Z8

Abstract

No effective recombinant vaccines are currently available for any rickettsial diseases. In this regard the first non-ribosomal DNA sequences from the obligate intracellular pathogen *Piscirickettsia salmonis* are presented. Genomic DNA isolated from Percoll density gradient purified *P. salmonis*, was used to construct an expression library in lambda ZAP II. In the absence of preexisting DNA sequence, rabbit polyclonal antiserum raised against *P. salmonis*, with a bias toward *P. salmonis* surface antigens, was used to identify immunoreactive clones. Catabolite repression of the lac promoter was required to obtain a stable clone of a 4,983 bp insert in *Escherichia coli* due to insert toxicity exerted by the accompanying radA open reading frame (ORF). DNA sequence analysis of the insert revealed 1 partial and 4 intact predicted ORF’s. A 486 bp ORF, ospA, encoded a 17 kDa antigenic outer surface protein (OspA) with 62% amino acid sequence homology to the genus common 17 kDa outer membrane lipoprotein of *Rickettsia prowazekii*, previously thought confined to members of the genus *Rickettsia*. Palmitate incorporation demonstrated that OspA is posttranslationally lipidated in *E. coli*, albeit poorly expressed as a lipoprotein even after replacement of the signal sequence with the signal sequence from *lpp* (Braun lipoprotein) or the rickettsial 17 kDa homologue. To enhance expression, ospA was optimized for codon usage in *E. coli* by PCR synthesis. Expression of ospA was ultimately improved (~13% of total protein) with a truncated variant lacking a signal sequence. High level expression (~42% tot. prot.) was attained as an N-terminal fusion protein with the fusion product recovered as inclusion bodies in *E. coli* BL21. Expression of OspA in *P. salmonis* was confirmed by immunoblot analysis using polyclonal antibodies generated against a synthetic peptide of OspA (110-129) and a strong antibody response against OspA was detected in convalescent sera from coho salmon (*Oncorhynchus kisutch*).

Introduction

In spite of their gaining importance there are as yet no effective, commercial vaccines against human rickettsial diseases (Sumner, et al., 1995); although whole cell vaccines do elicit protective responses in animal models, they are only partially effective in humans (Sumner, et al., 1995). Current vaccine strategies using recombinant rickettsial protein immunogens have been shown to successfully elicit protective immune responses against bacterial challenge (McDonald, et al., 1987, Sumner, et al., 1995).

Piscirickettsia salmonis, is the aetiological agent of salmonid rickettsial septicaemia (SRS) (Branson and Nieto Diaz-Munoz, 1991, Lannan and Fryer, 1993), an economically significant disease that heavily impacts the rearing of cold water salmonids. *P. salmonis* is an unusually recalcitrant, psychrotrophic, gram-negative bacterium which grows very slowly taking 15-20 days to develop a full cytopathic effect (CPE) with a cell yield ~10% of other rickettsial strains. *P. salmonis* is the first rickettsia-like bacterium to be isolated from an aquatic polikillotherm (Fryer, et al., 1990) and since initial isolation in Chile in 1989, *P. salmonis* has also been identified in Norway (House, et al., 1999), Scotland, and on the Atlantic and Pacific coasts of Canada (Brocklebank, et al., 1993, Jones, et al., 1998) thus appearing to be emerging. No effective vaccines are currently available against *P. salmonis*, leaving heavy antibiotic regimes as the only management alternative. While *P. salmonis* adheres to the historical definition of *rickettsiales* as being an obligate intracellular bacterium, recent 16S rRNA analysis clearly indicates that *P. salmonis* is phylogenetically unrelated to the majority of *Rickettsiales* (Fryer, et al., 1992, Mauel, et al., 1999).

For correspondence. Email wkay@uvic.ca; Tel. (250) 721-7078; Fax. (250) 721-8855.
Further Reading

Caister Academic Press is a leading academic publisher of advanced texts in microbiology, molecular biology and medical research. Full details of all our publications at caister.com

• MALDI-TOF Mass Spectrometry in Microbiology
 Edited by: M Kostrzewa, S Schubert (2016)
 www.caister.com/malditof

• Aspergillus and Penicillium in the Post-genomic Era
 Edited by: RP Vries, IB Gelber, MR Andersen (2016)
 www.caister.com/aspergillus2

• The Bacteriocins: Current Knowledge and Future Prospects
 Edited by: RL Dorfl, SM Roy, MA Riley (2016)
 www.caister.com/bacteriocins

• Omics in Plant Disease Resistance
 Edited by: V Bhadauria (2016)
 www.caister.com/opdr

• Acidophiles: Life in Extremely Acidic Environments
 Edited by: R Quatrini, DB Johnson (2016)
 www.caister.com/acidophiles

• Climate Change and Microbial Ecology: Current Research and Future Trends
 Edited by: J Marxsen (2016)
 www.caister.com/climate

• Biofilms in Bioremediation: Current Research and Emerging Technologies
 Edited by: G Lear (2016)
 www.caister.com/biorem

• Microalgae: Current Research and Applications
 Edited by: MN Tsaiologlou (2016)
 www.caister.com/microalgae

• Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
 Edited by: H Shintani, A Sakudo (2016)
 www.caister.com/gasplasma

• Virus Evolution: Current Research and Future Directions
 Edited by: SC Weaver, M Denison, M Roossinck, et al. (2016)
 www.caister.com/virusevol

• Arboviruses: Molecular Biology, Evolution and Control
 Edited by: N Vasilikas, DJ Gubler (2016)
 www.caister.com/arbo

• Shigella: Molecular and Cellular Biology
 Edited by: WD Picking, WL Picking (2016)
 www.caister.com/shigella

• Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
 Edited by: AM Romani, H Guasch, MD Balaguer (2016)
 www.caister.com/aquaticbiofilms

• Alphaviruses: Current Biology
 Edited by: S Mahalingam, L Herrero, B Herring (2016)
 www.caister.com/alphha

• Thermophilic Microorganisms
 Edited by: F Li (2015)
 www.caister.com/thermophile

• Flow Cytometry in Microbiology: Technology and Applications
 Edited by: MG Wilkinson (2015)
 www.caister.com/flow

• Probiotics and Prebiotics: Current Research and Future Trends
 Edited by: K Venema, AP Carmo (2015)
 www.caister.com/probiotics

• Epigenetics: Current Research and Emerging Trends
 Edited by: BP Chadwick (2015)
 www.caister.com/epigenetics2015

• Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications
 Edited by: A Burkovski (2015)
 www.caister.com/cory2

• Advanced Vaccine Research Methods for the Decade of Vaccines
 Edited by: F Bagnoli, R Rappuoli (2015)
 www.caister.com/vaccines

• Antifungals: From Genomics to Resistance and the Development of Novel Agents
 Edited by: AT Coste, P Vandeputte (2015)
 www.caister.com/antifungals

• Bacteria-Plant Interactions: Advanced Research and Future Trends
 www.caister.com/bacteria-plant

• Aeromonas
 Edited by: J Graf (2015)
 www.caister.com/aeromonas

• Antibiotics: Current Innovations and Future Trends
 Edited by: S Sánchez, AL Demain (2015)
 www.caister.com/antibiotics

• Leishmania: Current Biology and Control
 Edited by: S Adak, R Datta (2015)
 www.caister.com/leish2

• Acanthamoeba: Biology and Pathogenesis (2nd edition)
 Author: NA Khan (2015)
 www.caister.com/acanthamoeba2

• Microarrays: Current Technology, Innovations and Applications
 Edited by: Z He (2014)
 www.caister.com/microarrays2

• Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications
 Edited by: D Marco (2014)
 www.caister.com/n2
Previous studies of *P. salmonis* focused on its growth, purification, and preliminary identification of its surface antigens as possible vaccine candidates. Here we were able to purify enough *P. salmonis* genomic DNA to construct an expression library and to screen it with the intent of cloning and identifying immunoreactive surface antigens as potential recombinant vaccine candidates. We report the first non-ribosomal DNA sequences from *P. salmonis* and the identification, characterization, and optimized expression of a 17 kDa lipoprotein antigen, OspA, with distinct homology to a 17 kDa surface lipoprotein of the genus *Rickettsia*.

Results

Identification of Immunoreactive *P. salmonis* Lambda ZAP II Clones

Screening of the *P. salmonis* expression library with high titre anti-*P. salmonis* rabbit serum identified 18 strongly immunoreactive plaques. These plaques were picked and were rescreened until pure. Initial attempts to excise the pBluescript clones from the lambda phagemids using helper phage were unsuccessful. Endonuclease digests conducted on genomic lambda DNA from all 18 clones showed that 16 of the clones had 7 kb inserts, while the other two clones had insert sizes of 6 and 5.5 kb. Restriction fragment length analysis with frequently cutting endonucleases suggested that 16 of the clones were identical and all 18 clones contained a common region of DNA (data not shown).

Successful in vivo excision of the pBluescript clones was achieved only when the lac promoter was repressed using a 1% glucose supplement in all media. Only the 5.5 kb lambda clone yielded a stable insert-containing pBluescript clone, pB12, encoding a 5 kb insert (Figure 1), but was very slow growing even under glucose repression.

To confirm that the insert obtained in clone pB12, was of *P. salmonis* origin and was the same insert encoded by the lambda phagemid clones, DNA dot blot analysis was used. Genomic DNA from all 18 lambda clones, *P. salmonis*, CHSE-214, and pBluescript plasmid DNA was analyzed by DNA dot blotting using insert DNA from pB12 as the probe. Hybridization revealed that the pB12 insert was of *P. salmonis* origin. The pB12 insert also hybridized with all 18 lambda clone genomic DNA samples indicating that all the inserts encoded an overlapping fragment of *P. salmonis* DNA.

Sequence Analysis of Clone pB12

DNA sequencing of Exo III/S1 nuclelease deletion clones of the pB12 insert revealed that the insert was 4,983 bp long and had a total A+T content of 59% (Figure 1). Coding predictions using Borodovsky’s Markov method (Borodovsky, et al., 1995) identified 4 intact open reading frames (ORF) and 1 partial ORF creating a gene fusion in frame with lacZ (Figure 1). The predicted ORF’s were subjected to BLAST2 (Altschul, et al., 1997) and FASTA3 (Pearson, 1998) analysis to determine if any similar sequences were known.

The 499 bp partial ‘alr’ ORF (Figure 1) had a 54% A+T content and was predicted to encode a 176 amino acid (a.a.) protein fused to the N-terminal fragment of LacZ. The predicted molecular weight of the LacZ’-Alr fusion is 22.2 kDa. The predicted a.a. sequence of the ‘alr’ ORF shares 49% a.a. identity and 65% a.a. similarity with the 167 a.a. C-terminal region of alanine racemase from *Pseudomonas aeruginosa* (GenBank AAD47082).

A 732 bp ORF (bx; Figure 1) with a 61% A+T content was predicted to encode a 243 a.a., 27.6 kDa protein. Both FASTA3 and BLAST2 only identified low scoring a.a. homology (33% identical, 49% similar) between the central 187 a.a. region of the *bx* ORF and a 274 a.a. predicted ORF, BAX, in *E. coli* K12 (GenBank AAB18547).

A 1368 bp ORF (radA; Figure 1) with a 57% A+T content was predicted to encode a 456 a.a., 49.4 kDa protein. A high degree of a.a. homology was found between

Figure 1. A schematic of the ORF’s in the 4,983 bp *P. salmonis* insert of clone pB12. Open arrows depict predicted ORF’s and their coding direction. The shaded regions represent a 288 bp direct repeat that flanks the predicted transposase ORF, *tnpA*. The entire pB12 insert has a G+C content of 41%. The regions of clone pB12 encoded by deletion clones pB12-5.2, pB12-6.3b, pB12-8.3, and pB12-8.7 are represented by thin black arrows. The Xba I and Hind III restriction sites were used to subclone the *ospA* into pBC. Primers 1 and 2 (5’-TGC TCA ACA ACC CTT ATT CTC AG-3’ and 5’-TAG GCG TTA TGT GTA TTT AGT GTA TGT AGT-3’) were used to generate a 522 bp probe of the *bx* ORF. Primers 3 and 4 (5’-AAA AAC GTA ATA AGC CTT CAC AAA TGT CAA C-3’ and 5’-AAA GGC CAT TAA CTC TCC CAT ATC ATT CAC-3’) were used to generate a 398 bp probe of the *tnpA* ORF.
the entire predicted *P. salmonis* RadA a.a. sequence and the RadA DNA repair enzymes from a variety of bacteria. *P. salmonis* RadA is most homologous to the RadA of *P. aeruginosa* (SwissProt P96963) with 62% a.a. identity and 77% a.a. similarity. *P. salmonis* RadA also has 59% a.a. identity and 75% a.a. similarity to *E. coli* RadA (SwissProt P24554).

A 486 bp ORF (*ospA*; Figure 1), immediately following *radA*, with a 51% A+T content was predicted to encode a 162 a.a., 17.7 kDa protein with the 21-162 a.a. region having sequence similarity to the processed rickettsial 17 kDa genus common antigen (Figure 2). The predicted a.a. sequence of the *ospA* ORF was up to 41% identical and 62% similar to the 17 kDa protein antigens of *R. prowazekii* (SwissProt P16624), *Rickettsia japonica* (SwissProt Q52764), *Rickettsia rickettsii* (SwissProt P05372), and *Rickettsia typhi* (SwissProt P22882).

The final 717 bp ORF (*tnpA*; Figure 1) had a 66% A+T content and was predicted to encode a 239 a.a., 27.7 kDa protein. The *tnpA* ORF is flanked by a perfect 288 bp direct repeat. Amino acid similarity searches returned strong matches between the predicted a.a. sequence of the *tnpA* ORF and a variety of transposases. The closest match

Figure 2. Pairwise sequence alignment of the *P. salmonis* 17 kDa antigen, OspA, and the *R. prowazekii* 17 kDa antigen (SwissProt G112704). The pairwise alignment was generated using the FASTA3 algorithm. The *P. salmonis* 17 kDa antigen shares 41% identity (black background) and 62% similarity (gray background) with the 17 kDa antigen of *R. prowazekii*. Synthetic peptides representing the region from a.a. 110-129 of the *P. salmonis* 17 kDa antigen were used to generate rabbit polyclonal serum.

Figure 3. A) *in vitro* transcription and translation of pB12 using *E. coli* S30 extracts. Products of *in vitro* transcription and translation were [³⁵S]methionine labeled and analyzed by 12% SDS-PAGE. A 49 kDa protein (black arrow) was produced by pB12 and pB12-8.7 plasmids but not by deletion clones pB12-6.3b and pB12-5.2 which lack the *radA* ORF. Expression of a 31 kDa product corresponding to β-lactamase (white arrow) was present in all samples. Molecular weights are on the left in kDa. B) Northern blot analysis of total RNA from clones pB12 and pB12-6.3b. 10 µg of total RNA was loaded per lane and analyzed by 1.2% formaldehyde agarose gel electrophoresis. Clone pB12 total RNA was hybridized with probes specific to the *bax* and *radA* ORF’s. Clone pB12-6.3b total RNA was allowed to hybridize with *ospA* and *tnpA* probes. The *ospA* probe hybridized with 3 transcripts (1.4, 1.2, and 0.9 kb) in the pB12-6.3b sample. No transcripts specific to the *bax*, *radA*, and *tnpA* ORF’s were detected. None of the probes hybridized with *E. coli* DH5α total RNA (results not shown). Molecular weight standards shown are in kb.
was a transposase encoded in a *Porphyromonas gingivalis* insertion element, IS195 (GenBank U83995), with 47% a.a. identity and 65% a.a. similarity (Lewis and Macrina, 1998).

In vitro Transcription and Translation of Clone pB12

Deletion clones of pB12 were used for *in vitro* transcription and translation experiments. Deletion clones were chosen on the basis of whether or not they encoded particular predicted ORF’s (Figure 1). Clone pB12-8.7 was chosen because it only lacked the majority of the *lacZ*·*alr* construct (Figure 1). Clone pB12-6.3b lacked the majority of the *radA* ORF and pB12-5.2 lacked the *ospA* ORF as well (Figure 1). Five proteins with masses of 17, 22, 28, 28 and 49 kDa were predicted to be expressed from the predicted ORF’s of clone pB12. A protein in the 49 kDa range corresponding to RadA was expressed by clones pB12 and pB12-8.7 at levels similar to β-lactamase (31 kDa) in the pBluescript control (Figure 3A). Expression of the 49 kDa product was abolished by elimination of the *radA* ORF in clones pB12-6.3b and pB12-5.2 (Figure 3A). No detectable expression of proteins corresponding to the 3 other ORF’s was observed.

Northern Blot Analysis of Clone pB12

Total RNA from clone pB12 was probed for expression of *bax* and *radA* transcripts. Total RNA from clone pB12-6.3b was selected for analysis of *ospA* and *tnpA* expression because it did not encode the *bax* and *radA* ORF’s and it grew far better than pB12. Each probe was hybridized with total RNA from *E. coli* and no hybridization was observed with any probe (results not shown). Transcriptional products for the *bax*, *radA*, and *tnpA* ORF’s were not detected in clone pB12 and pB12-6.3b (Figure 3B). However, *ospA* transcripts were detected in pB12-6.3b (Figure 3B). The *ospA* probe hybridized with a broad band around 1.2 kb in size (Figure 3B). This band appears to be comprised of three unresolved bands approximately 1.5, 1.2, and 0.9 kb in size.

PCR Synthesis of a Codon Optimized *ospA* gene, 17E2

In an effort to obtain high level *E. coli* expression of the *P. salmonis* *ospA* ORF, a synthetic version of *ospA* (17E2), was constructed by PCR (Figure 4A). Analysis of the codon usage of *ospA* found that 20% of the codons were rare *E. coli* codons (Henaut and Danchin, 1996). When the 17E2 gene was synthesized the Asn-2 codon was removed and codon usage of the entire gene was optimized for high level expression in *E. coli*.

Four putative pET-17E2 clones, identified by *Nde* I/*Hind* III excision of an appropriately sized insert, were DNA sequenced. Only one of the four 17E2 clones was confirmed to have its reading frame intact. The reading frames of the other three clones were destroyed by single base pair deletions at various positions throughout the gene. The chosen pET-17E2 clone contained two base pair substitutions that created transitions of Ala-54→Cys-54, and Arg-149→Pro-149. These base pair substitutions were attributed to the fidelity of Taq DNA polymerase during PCR and were considered acceptable because they did not alter the antigenic profile of OspA.
OspA Lipoprotein Antigen of *P. salmonis*

Removal and Replacement of the OspA Signal Sequence

PROSITE ProfileScan analysis of OspA identified a consensus pattern for prokaryotic membrane lipoprotein lipid attachment (PS00013) with Cys-21 (Figure 5) as the predicted acylation site in the 11-21 a.a. region (Hofmann, et al., 1999).

SignalP calculated a 0.464 probability that OspA has a signal peptide (Figure 5). The signal sequence of 17E2 was removed by PCR to create a truncated version of *ospA*, pET-Δ17E2. The Δ17E2 construct lacked the N-terminal 20 a.a. of wild type (w.t.) OspA (Figure 2), and Cys-20 was replaced by a Met start codon. The signal sequence of 17E2 was also replaced with the type II signal sequences of Braun’s lipoprotein (*lpp*) and the *R. rickettsii* 17 kDa antigen (Anderson and Tzianabos, 1989, Inouye, et al., 1977). The codon usage of the signal sequences was optimized for high level *E. coli* expression and were added to the Δ17E2 construct by PCR (Figure 4B). Replacement of the OspA signal peptide region with the signal peptides of Braun’s lipoprotein and the *R. rickettsii* 17 kDa antigen improved calculated probability of having a signal peptide to 0.991 and 0.998, respectively (Figure 5).

Expression of OspA Under the Control of the T7 Promoter

The Xba I/Hind III fragment of clone pB12-6.3b (Figure 1) was cloned into pBC KS placing *ospA* under the control of the T7 promoter. Only low levels of expression of a 17 kDa product was obtained upon induction in *E. coli* XL1-Blue (Figure 6A).

Comparative Expression of OspA Constructs

Induced expression levels of OspA from codon optimized pET-17E2 in *E. coli* BL21 were not higher than those obtained with w.t. *ospA* from pBC-17kDa (Figure 6A). Replacement of the OspA signal peptide with signal peptides from Braun’s lipoprotein and the *R. rickettsii* 17 kDa antigen signal peptides did not result in readily detectable expression levels of OspA (Figure 6A). However, removal of the OspA signal peptide allowed substantially

Figure 5. SignalP analysis of OspA and chimeric signal peptide constructs. The signal peptide score (S-score) recognizes signal peptide versus non-signal-peptide positions and should be high at all positions before the cleavage site (Nielsen, et al., 1997). Residues surrounded by boxes represent the PROSITE consensus regions for prokaryotic lipid attachment. Note how replacement of the OspA signal peptide with the signal peptides of Braun’s lipoprotein (*lpp*ospA) and *R. rickettsii* 17 kDa antigen dramatically improve the signal peptide prediction of OspA.

Figure 6. A) Comparative *E. coli* production of OspA protein constructs. Whole cell lysates of *E. coli* OspA clones were analyzed by SDS-PAGE (15% polyacrylamide). Samples of all OspA constructs at time 0 (28˚C) and after 10 h induction at 42˚C were stained with GelCode. For clarity, only pBC-17kDa is included as representative of OspA production levels obtained from both pBC-17kDa and pET-17E2. *E. coli* XL1-Blue and BL21 carrying pET21a were routinely induced in parallel with OspA constructs and no products that correlated with the m.w. of OspA products were observed at either time 0 or following induction (results not shown). Induced expression of OspA products from constructs pBC-17kDa and pET-Δ17E2 were visible around 16 kDa, and at 28 kDa in the pET-C17E2 sample (black arrows). The 28 kDa OspA fusion protein was localized to the insoluble (Insol.) fraction of induced pET-C17E2. Quantification of samples revealed that truncated OspA (pET-Δ17E2) was expressed as 13% of total cellular protein and the OspA fusion was expressed as 34% tot. prot. representing 42% of the insoluble protein fraction. Molecular weights are on the left in kDa.

increased expression of 17kDa product in induced samples of pET-17E2 (Figure 6A).

Posttranslational Modification of OspA

[14C]palmitate incorporation was used to determine whether OspA is processed as a lipoprotein in E. coli. Actively growing cultures of pBC-17kDa, pET-lppospA, pET-ricospA, and pET-Δ17E2 were induced and labeled with [14C]palmitate for 3 hr. Whole cell lysates of the clones were analyzed by 15% SDS-PAGE (Figure 6B). Wild type OspA and the chimeric ricospA and lppospA constructs were all labeled with comparable levels of [14C]palmitate (Figure 6B). Removal of the signal peptide from OspA abolished [14C]palmitate incorporation (Figure 6B).

Coupling of OspA with an N-Terminal Fusion Partner

17E2 was cloned in frame with a 91 a.a. N-terminal fusion partner protein in an effort to prevent recognition of the signal peptide and subsequent lipid modification in E. coli. Very high expression of the OspA fusion construct (34% tot. prot.), C17E2, was obtained in E. coli BL21. The OspA fusion was recovered as inclusion bodies comprising 42% tot. prot. of the insoluble cellular fraction (Figure 6A).

Immunoblot Analysis of OspA

Expression of the immunoreactive product responsible for the initial identification of the lambda clone was not detected in clone pB12. The full length clone pB12 grew very poorly even when the lac promoter was catabolite repressed. Clone pB12-6.3b, which lacked the bax and radA ORF’s (Figure 1), grew well under standard conditions and expressed a weakly immunoreactive 17 kDa product (results not shown).

Repeated efforts to generate high titre rabbit polyclonal antibodies against OspA that reacted strongly with E. coli produced OspA failed. OspA expressed in E. coli was never observed to react strongly with several rabbit antiserum samples. To confirm expression of OspA in P. salmonis, the Jameson-Wolf method was used to identify a region of OspA (110-129 a.a.) with a high antigenic index (Jameson and Wolf, 1988). Rabbit antibodies were raised against a 20 a.a. synthetic peptide of this region. Although rabbit antibodies generated against the synthetic peptide reacted with several E. coli proteins, the serum did react with a 17 kDa product in induced samples of pET-17E2 (Figure 7) which was not present in E. coli BL21 carrying pET21a alone (results not shown). Specificity of anti-peptide serum for OspA was further demonstrated upon strong recognition of a 17 kDa P. salmonis antigen (Figure 7).

Cohescent serum from coho salmon, against P. salmonis, also strongly recognized OspA and the OspA fusion in induced samples of pET-17E2 and pET-C17E2 (Figure 7). The 12 kDa protein C fusion partner of C17E2 was not recognized by either the rabbit anti-OspA peptide or cohescent coho serum (Figure 7).

Discussion

Rickettsiae are notoriously slow growing bacteria and, like Coxiella burnetii and members of the tribe Ehrlichiae, P. salmonis is even more difficult to grow and to separate from host cell components because of its location within cytoplasmic vacuoles. Contamination of genomic DNA preparations is a serious concern when constructing genomic libraries of obligate intracellular bacteria. Therefore, with all their imperfections PCR techniques are often preferred over genomic library screening when cloning genes from rickettsiae (Anderson, 1997) but are inadequate for detecting novel genes.

Prior to this study, no genomic sequence data was available from P. salmonis with the exception of ribosomal RNA genes (Fryer et al., 1992, Mauel et al., 1999). Therefore, to identify antigens with vaccine potential, we constructed a P. salmonis genomic DNA expression library and screened it with rabbit anti-P. salmonis serum previously shown to predominantly recognize surface associated antigens (Kuzyk et al., 1996). All 18 immunoreactive clones isolated encoded a common region of the P. salmonis genome. DNA sequencing of clone pB12 revealed a 4,983 bp insert with an A+T content of 59% and 4 predicted ORF’s and 1 partial ORF (Figure 1).

The P. salmonis radA ORF was well expressed by E. coli S30 lysates (Figure 3A) and seriously interfered with subcloning of the pB12 insert. P. salmonis RadA is apparently toxic to E. coli as clones lacking the initial 26 bp of radA grew well in E. coli DH5α. Even though radA was ~1.5 kb downstream of lacP, catabolic repression of lacP was still required to obtain a stable insert in E. coli. P. salmonis RadA is closely related to that of P. aeruginosa and E. coli (≥60% identical). The RadA enzyme family are known DNA repair enzymes suspected to be involved in the repair of DNA alkylation (Song and Sargentini, 1996). Even though a radA transcript could not be detected (Figure 3B), the presence of an intact radA ORF had a dramatic impact upon the growth of E. coli. Toxicity is presumably the result of unregulated radA expression.

The a.a. sequence of the ospA ORF represents a
putative 17.7 kDa outer surface protein (OspA) that displays homology to the 17 kDa rickettsial genus common antigen, a putative outer membrane lipoprotein (Anderson, et al., 1988, Anderson and Tzianabos, 1989). The rickettsial 17 kDa membrane antigen is one of only three characterized rickettsial surface proteins and is highly conserved amongst Rickettsia sp. with greater than 90% amino acid identity (McDonald, et al., 1997). The function of the 17 kDa antigen is unknown and until now has never been identified in any bacteria outside the genus Rickettsia (Anderson, 1990).

OspA expression was not detected by in vitro transcription and translation although a weakly immunoreactive 17 kDa protein was observed by immunoblot analysis of pB12 deletion clones. In an effort to increase the E. coli expression level of OspA for further characterization studies and future protection studies, the ospA ORF was cloned under control of the phage T7 promoter (pBC-17kDa). OspA was visibly expressed from pBC-17kDa after anywhere from 3-10 h of induction, but only at a low level (Figure 6A). Therefore, poor expression of the ospA gene does not appear to be the result of its promoter being poorly recognized in E. coli. It is possible that the ribosome binding site (RBS) of ospA is weakly recognized in E. coli, or ospA mRNA may have secondary structure in the 5’ region (Makrides, 1996), or that differential use of minor codons is used as a mechanism to regulate gene expression post-translationally (Saier, 1995).

A PCR strategy to synthesize the ospA gene using codons optimized for E. coli was formulated (Figure 4A). Previous studies on E. coli expression of low m.w. recombinant proteins demonstrated that the position 2 codon can have a significant impact on expression with Arg (CGT) codons being highly favourable (Belagaje, et al., 1997). Therefore, the Asn-2 codon of ospA was deleted in the synthetic gene, 17E2, making Arg-3 the second codon in 17E2 (Figure 2). The 17E2 gene was cloned into pET21a under control of the T7 promoter and with an optimal RBS. Degradation makes expression of low m.w. proteins in E. coli inherently difficult (Belagaje, et al., 1997), therefore, expression of pET-17E2 and subsequent constructs was studied in E. coli BL21, deficient in Lon and OmpT proteases. Levels of induced OspA expression from optimized pET-17E2 were no higher than those previously obtained from pBC-17kDa.

The rickettsial 17 kDa antigen is an outer membrane protein and has a signal peptide that is recognized by signal peptidase II. Removal of type II signal peptides is a three step process involving addition of diacylglycerol to a Cys prior to cleavage of the of the signal peptide on the N-terminal side of the Cys and addition of a fatty acid to the free amide of the N-terminal Cys (Stanley, et al., 1998, von Heijne, 1990). A signal peptide prediction algorithm, SignalP (Nielsen, et al., 1997), using a neural network trained on known signal peptides marginally identified OspA as a secreted protein (Figure 5) and the 11-21 a.a. region of OspA does contain the consensus PROSITE pattern for prokaryotic membrane lipoprotein lipid attachment (PS00013) with Cys-21 being the predicted acylation site (Figure 5) (Hofmann, et al., 1999).

Presence of a signal peptide alone does not guarantee transport of a protein across the bacterial inner membrane (Makrides, 1996). Removal of a signal sequence from a Borrelia burgdorferi lipoprotein permitted much higher expression in E. coli than its lipidated form (Dunn, et al., 1990). To determine the effect the signal peptide of OspA has on its expression and lipidation in E. coli, the signal sequence (a.a. 1-20) of 17E2 was removed by PCR. Oligonucleotides of type II signal peptides from Braun’s lipoprotein and the R. rickettsii 17 kDa antigen that are well recognized by E. coli were synthesized and added to ∆17E2 by PCR (Figure 4B) (Anderson, et al., 1988, Hansson, et al., 1995, Inouye, et al., 1977). To determine if the heterologous signal peptides improved expression or lipidation of OspA, expression of OspA constructs pET-∆17E2, pBC-17kDa, pET-lppospA, and pET-ricospA were compared (Figure 6A). OspA expression was significantly improved by removing its putative signal peptide (Figure 6A). The addition of Braun and rickettsial signal peptides did not improve OspA expression and induced products were not detected after 10 h (Figure 6A).

But, levels of OspA expression similar to pBC-17kDa had been observed from pET-lppospA and pET-ricospA during shorter periods of induction.

Palmitate incorporation was conducted to determine if OspA is recognized and processed as a lipoprotein in E. coli. Palmitate was incorporated at similar levels into the OspA products from pBC-17kDa, pET-lppospA, and pET-ricospA constructs (Figure 6B). Removal of the signal peptide from OspA abolished incorporation of palmitate (Figure 6B). It appears that the inability to highly express OspA in E. coli stems principally from the presence of its signal peptide. Effective expression of secreted proteins in E. coli is not a trivial task; protein exporting machinery can become overloaded and cytoplasmic preprotein can be subjected to proteolysis leading to poor expression levels (Makrides, 1996).

Although the improved expression OspA in its truncated form from pET-∆17E2 was quite promising, we anticipated that a higher expression level may be obtained by partnering OspA with an N-terminal fusion protein. By adding the fusion partner we aimed to mask the OspA type II signal peptide from secretory machinery and further protect it from proteases. Excellent expression of the 28 kDa fusion protein was obtained from pET-C17E2 in E. coli BL21 with the fusion product isolated as inclusion bodies from the insoluble fraction of sonicated cells (Figure 6A). Localization of the OspA fusion to inclusion bodies is not detrimental to our goal of high level expression of OspA because neither biological activity nor proper folding of recombinantly expressed OspA are required for our applications. Putative protective epitopes of OspA are likely to be T cell restricted because of the intracellular nature of P. salmonis.

Although the surface localized nature of OspA has not been confirmed, rabbit anti-P. salmonis serum originally used to identify the ospA-encoding lambda clone was previously shown to predominantly recognize surface associated antigens of P. salmonis by immunogold transmission electron microscopy (Kuzyk, et al., 1996). It seems reasonable to assume that OspA is surface associated when its lipoprotein nature and homology to a rickettsial surface lipoprotein are taken into account.
Repeated attempts to generate high specificity rabbit serum against OspA expressed in *E. coli* failed. OspA produced in *E. coli* never strongly reacted with polyclonal rabbit anti-*P. salmonis* serum used to originally identify clone pB12. But, antibodies generated against a 20 a.a. synthetic peptide of OspA did react with a 17 kDa product in *P. salmonis* and weakly recognize the OspA product expressed from pET-17E2 (Figure 7), thereby confirming OspA as an expressed protein in *P. salmonis*. None of the other OspA constructs exhibited better immunoreactivity than w.t. OspA expressed from pBC-17kDa (results not shown).

The ability of whole cell *P. salmonis* to elicit a detectable antibody response in serum against OspA is of considerable interest. Both OspA and the OspA fusion protein reacted strongly and specifically with convalescent serum from coho salmon (Figure 7). The ability of the natural host of *P. salmonis* to elicit an immune response against OspA during the course of an infection identifies OspA as a potential recombinant vaccine antigen for *P. salmonis*. Further investigation will determine whether recombinantly produced OspA is capable of generating a protective immune response against *P. salmonis* in salmonids.

We have presented the first non-ribosomal DNA sequence data from the AT-rich, obligate intracellular salmonid pathogen, *P. salmonis*, and identified a prospective vaccine candidate antigen. We have confirmed that OspA, a homologue of a rickettsial lipoprotein nature of OspA was identified as a limiting factor in its expression. High level *E. coli* expression of immunoreactive OspA targeted to inclusion bodies was achieved by partnering OspA with an N-terminal fusion protein. The OspA fusion was recognized by convalescent salmon sera indicating that during a natural infection in the salmonid host, *P. salmonis* elicits an immune response against OspA. Future work will focus on the ability of OspA to confer immunity against *P. salmonis* challenge in salmon.

Experimental Procedure

Bacterial Strains, Growth, and Isolation

P. salmonis and CHSE-214 samples were obtained from the American Type Culture Collection (ATCC). Type strain *P. salmonis* LF-89 (ATCC VR-1361), herein referred to as *P. salmonis*, was routinely grown on monolayers of a chinook salmon embryo cell line, CHSE-214 (ATCC CRL-1881) as previously described by Kuzyk et al. (1996).

E. coli DH5α, SOLR, XL1-Blue, XL1-Blue MRF* (Stratagene), and BL21 (Amersham Pharmacia) were used for general cloning and lambda phage propagation. *E. coli* was routinely grown using either LB, terrific broth (TB), or MacConkey media. When required, supplements were added to media at the following concentrations: ampicillin (Amp), 100 µg/ml; chloramphenicol (Cm), 28 µg/ml; kanamycin (Kan), 28 µg/ml; maltose, 0.2% (w/v); MgSO₄, 10 mM; X-gal, 40 µg/ml; IPTG, 1 mM; glucose, 1% (w/v).

All lambda phage manipulations were carried out following protocols and described by Kuzyk et al. (1996). DNA isolation solution, DNAzol (Life Technologies), was used to obtain genomic DNA from the purified *P. salmonis*. Genomic DNA was further purified by equilibrium centrifugation using a CsCl-ethidium bromide gradient to yield 250 µg of *P. salmonis* genomic DNA (Sambrook, et al., 1989).

SDS-PAGE and Immunoblot Analysis

Whole cell lysates were separated by SDS-PAGE using a discontinuous SDS gel system following the protocol of Laemmli as modified by Ames (Ames, 1974, Laemmli, 1970). Protein samples were visualized using GelCode Blue Stain Reagent (Pierce) and quantified with AlphaEase software (Alpha Innotech Corp.). Western blotting was conducted as previously described (Collinson, et al., 1991). *P. salmonis* antigens were detected by using rabbit anti-*P. salmonis* serum (diluted 1/2,000) and rabbit anti-OspA peptide (dil. 1/100) followed by goat anti-rabbit IgG conjugated to alkaline phosphatase (dil. 1/3,000). Convalences of *P. salmonis* anti-IgG conjugated lambda hybridoma hybrid were also followed, with an anti-train acid Ig (heavy chain) mAb IPAPGCC (dil. 1/100) (Inmunose-Precise Antibodies, Victoria, BC) and anti-goat-mouse IgG conjugated to alkaline phosphatase (dil. 1/3,000) (Catlag Laboratories). Salmonoids only have a single antibody isotype that is an IgM-like tetramer that lacks a J chain (Press and Lillehaug, 1995). Immunobots were developed with 5-bromo-4-chloro-3-indolyl phosphate and nitro blue tetrazolium as previously described (Collinson, et al., 1991).

DNA Dot Blot Analysis

DNA samples (0.5 and 1.0 µg) from CHSE-214 cells, immunoreactive *P. salmonis* lambda clones, and excised pBluescript clones were applied to a nylon membrane, in duplicate (Hybond-N; Amersham). Blots were denatured in 1.5 M NaOH, 0.5 M NaOH, neutralized in 1.5 M NaCl, 0.5 M Tris (pH 8.0), and rinsed in 0.2 M Tris (pH 7.5), 2× SSC (Sambrook, et al., 1989).

The insert DNA from clone pB12 was used as a probe. The pB12 insert was agarose gel purified using Sephadrase (Pharmacia) and labeled with [*-32]P-dATP by nick translation (Amersham Pharmacia). Blots were hybridized with probe under standard conditions at 60°C for 18 h (Sambrook, et al., 1989). Following stringency washes, blots were visualized using a storage phosphor screen imaging system (Molecular Dynamics).

Construction of Deletion Clones and DNA Sequence Analysis

A directional deletion library of *P. salmonis* clone pB12 was constructed to facilitate sequence analysis. A *Exo III/S1* nuclease double-stranded nested deletion kit (Amersham Pharmacia) was used to create deletions in the direction of lacZ on the pBluescript vector. Restriction endonucleases EcoRI and SacI were used to generate opposing overhangs protecting the vector from *Exo III* digestion. Upon ligation using T4 DNA ligase (Life Technologies) and screening, 32 deletion clones were selected that represented the entire insert and differed in size by 100-500 bp. Double stranded plasmid DNA samples were sequenced using a combination of dye primer (Sequenase; Amersham Pharmacia) and dye termination (Dynal ET Terminator; Amersham Pharmacia). Sequencing reactions were analyzed using an automated sequencer (ABI 377; Perkin-Elmer). Sequence data were assembled and analyzed using the Lasergene software package (DNASTAR). These sequence data have been submitted to the DDBJ/EMBL/GenBank databases under accession number AF184152.

Antibody Generation

Antibodies were generated in New zealand white rabbits against 10 and 20 a.a. synthetic peptides based on a.a. 110-129 of the predicted OspA sequence. Peptides were glutaraldehyde conjugated to keyhole limpet hemocyanin (KLH) using a 40:1 molar ratio of peptide:KLH in standard phosphate buffered saline (pH 7.5). Conjugation was carried out for 1 h at 20°C.
4°C in a 10 ml reaction volume with 500 µg/ml KLH and 1% glutaraldehyde. For the primary immunization, rabbits received 250 µg of conjugated peptide mixed 1:1 with Freund’s complete adjuvant. Each rabbit was boosted three times at 2 week intervals with 250 µg of conjugated peptide per boost mixed 1:1 with Freund’s incomplete adjuvant. Anti-E. coli antibodies were assayed out using E. coli DH5α lysates following the protocol of Sambrook, et al. (1989).

Anti-P. salmonis polyclonal rabbit serum was prepared against purified P. salmonis as previously described (Kuzyk, et al., 1996). Convalescent serum was collected from coho salmon fry that had been challenged with P. salmonis but did not succumb to infection.

In vitro Transcription/Translation
E. coli S30 lysates (Promega) for transcription/translation of plasmid DNA were used. RNA in vitro transcription/translation product analyses were done using a gel documentation system (Gel documentation system)).

RNA Isolation and Northern Blot Analysis
Qiagen RNeasy columns were used to isolate total RNA from E. coli DH5α and clones pB12, and pB12-6b. All of which were in DH5α. 10 µg of each total RNA sample, including DH5α, were analyzed by 12% SDS-PAGE. Gels were vacuum dried at 80°C and visualized using a storage phosphor screen imaging system.

DNA Sequencing
DNA sequencing was performed by using the ABI Prism 377 DNA Sequencer (Perkin Elmer) and the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer) following the manufacturer’s instructions.

Creation of E. coli Optimized ospA and Subsequent Signal Peptide Constructs
The products of all completed PCR strategies were initially subcloned into pBluescript and then subcloned into pET-17E2 using the BamHI and XhoI restriction sites immediately following the 17E2 TAA stop codon. For the primary immunization, rabbits received 250 µg of conjugated peptide mixed 1:1 with Freund’s complete adjuvant. Anti-P. salmonis polyclonal rabbit serum was prepared against purified P. salmonis as previously described (Kuzyk, et al., 1996). Convalescent serum was collected from coho salmon fry that had been challenged with P. salmonis but did not succumb to infection.

In vitro Transcription/Translation
E. coli S30 lysates (Promega) for transcription/translation of plasmid DNA were used. RNA in vitro transcription/translation product analyses were done using a gel documentation system (Gel documentation system (Gel documentation system (Gel documentation system (Gel documentation system)).

RNA Isolation and Northern Blot Analysis
Qiagen RNeasy columns were used to isolate total RNA from E. coli DH5α and clones pB12, and pB12-6b. All of which were in DH5α. 10 µg of each total RNA sample, including DH5α, were analyzed by 12% SDS-PAGE. Gels were vacuum dried at 80°C and visualized using a storage phosphor screen imaging system.

DNA Sequencing
DNA sequencing was performed by using the ABI Prism 377 DNA Sequencer (Perkin Elmer) and the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer) following the manufacturer’s instructions.

Creation of E. coli Optimized ospA and Subsequent Signal Peptide Constructs
The products of all completed PCR strategies were initially subcloned into pBluescript and then subcloned into pET-17E2 using the BamHI and XhoI restriction sites immediately following the 17E2 TAA stop codon. For the primary immunization, rabbits received 250 µg of conjugated peptide mixed 1:1 with Freund’s complete adjuvant. Anti-P. salmonis polyclonal rabbit serum was prepared against purified P. salmonis as previously described (Kuzyk, et al., 1996). Convalescent serum was collected from coho salmon fry that had been challenged with P. salmonis but did not succumb to infection.

In vitro Transcription/Translation
E. coli S30 lysates (Promega) for transcription/translation of plasmid DNA were used. RNA in vitro transcription/translation product analyses were done using a gel documentation system (Gel documentation system (Gel documentation system (Gel documentation system (Gel documentation system)).

RNA Isolation and Northern Blot Analysis
Qiagen RNeasy columns were used to isolate total RNA from E. coli DH5α and clones pB12, and pB12-6b. All of which were in DH5α. 10 µg of each total RNA sample, including DH5α, were analyzed by 12% SDS-PAGE. Gels were vacuum dried at 80°C and visualized using a storage phosphor screen imaging system.

DNA Sequencing
DNA sequencing was performed by using the ABI Prism 377 DNA Sequencer (Perkin Elmer) and the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer) following the manufacturer’s instructions.

Creation of E. coli Optimized ospA and Subsequent Signal Peptide Constructs
The products of all completed PCR strategies were initially subcloned into pBluescript and then subcloned into pET-17E2 using the BamHI and XhoI restriction sites immediately following the 17E2 TAA stop codon. For the primary immunization, rabbits received 250 µg of conjugated peptide mixed 1:1 with Freund’s complete adjuvant. Anti-P. salmonis polyclonal rabbit serum was prepared against purified P. salmonis as previously described (Kuzyk, et al., 1996). Convalescent serum was collected from coho salmon fry that had been challenged with P. salmonis but did not succumb to infection.

In vitro Transcription/Translation
E. coli S30 lysates (Promega) for transcription/translation of plasmid DNA were used. RNA in vitro transcription/translation product analyses were done using a gel documentation system (Gel documentation system (Gel documentation system (Gel documentation system (Gel documentation system)).

RNA Isolation and Northern Blot Analysis
Qiagen RNeasy columns were used to isolate total RNA from E. coli DH5α and clones pB12, and pB12-6b. All of which were in DH5α. 10 µg of each total RNA sample, including DH5α, were analyzed by 12% SDS-PAGE. Gels were vacuum dried at 80°C and visualized using a storage phosphor screen imaging system.

DNA Sequencing
DNA sequencing was performed by using the ABI Prism 377 DNA Sequencer (Perkin Elmer) and the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer) following the manufacturer’s instructions.

Creation of E. coli Optimized ospA and Subsequent Signal Peptide Constructs
The products of all completed PCR strategies were initially subcloned into pBluescript and then subcloned into pET-17E2 using the BamHI and XhoI restriction sites immediately following the 17E2 TAA stop codon. For the primary immunization, rabbits received 250 µg of conjugated peptide mixed 1:1 with Freund’s complete adjuvant. Anti-P. salmonis polyclonal rabbit serum was prepared against purified P. salmonis as previously described (Kuzyk, et al., 1996). Convalescent serum was collected from coho salmon fry that had been challenged with P. salmonis but did not succumb to infection.

In vitro Transcription/Translation
E. coli S30 lysates (Promega) for transcription/translation of plasmid DNA were used. RNA in vitro transcription/translation product analyses were done using a gel documentation system (Gel documentation system (Gel documentation system (Gel documentation system (Gel documentation system)).

RNA Isolation and Northern Blot Analysis
Qiagen RNeasy columns were used to isolate total RNA from E. coli DH5α and clones pB12, and pB12-6b. All of which were in DH5α. 10 µg of each total RNA sample, including DH5α, were analyzed by 12% SDS-PAGE. Gels were vacuum dried at 80°C and visualized using a storage phosphor screen imaging system.

DNA Sequencing
DNA sequencing was performed by using the ABI Prism 377 DNA Sequencer (Perkin Elmer) and the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer) following the manufacturer’s instructions.

Creation of E. coli Optimized ospA and Subsequent Signal Peptide Constructs
The products of all completed PCR strategies were initially subcloned into pBluescript and then subcloned into pET-17E2 using the BamHI and XhoI restriction sites immediately following the 17E2 TAA stop codon. For the primary immunization, rabbits received 250 µg of conjugated peptide mixed 1:1 with Freund’s complete adjuvant. Anti-P. salmonis polyclonal rabbit serum was prepared against purified P. salmonis as previously described (Kuzyk, et al., 1996). Convalescent serum was collected from coho salmon fry that had been challenged with P. salmonis but did not succumb to infection.

In vitro Transcription/Translation
E. coli S30 lysates (Promega) for transcription/translation of plasmid DNA were used. RNA in vitro transcription/translation product analyses were done using a gel documentation system (Gel documentation system (Gel documentation system (Gel documentation system (Gel documentation system)).

RNA Isolation and Northern Blot Analysis
Qiagen RNeasy columns were used to isolate total RNA from E. coli DH5α and clones pB12, and pB12-6b. All of which were in DH5α. 10 µg of each total RNA sample, including DH5α, were analyzed by 12% SDS-PAGE. Gels were vacuum dried at 80°C and visualized using a storage phosphor screen imaging system.

DNA Sequencing
DNA sequencing was performed by using the ABI Prism 377 DNA Sequencer (Perkin Elmer) and the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer) following the manufacturer’s instructions.

Creation of E. coli Optimized ospA and Subsequent Signal Peptide Constructs
The products of all completed PCR strategies were initially subcloned into pBluescript and then subcloned into pET-17E2 using the BamHI and XhoI restriction sites immediately following the 17E2 TAA stop codon. For the primary immunization, rabbits received 250 µg of conjugated peptide mixed 1:1 with Freund’s complete adjuvant. Anti-P. salmonis polyclonal rabbit serum was prepared against purified P. salmonis as previously described (Kuzyk, et al., 1996). Convalescent serum was collected from coho salmon fry that had been challenged with P. salmonis but did not succumb to infection.
reaction conditions remained unchanged, and 1 μl of reactions 2-1 and 2-2 diluted 1/10 were used as template. The first cycle of PCR contained no primers allowing the 44 bp overlap of the two templates to anneal at 55°C and Pfu DNA polymerase to synthesize the complementary regions. Following the first cycle, 10 pmol of primers for SYNTH and 17E2 REV were added and the remaining 29 cycles annealed at an elevated temperature of 65°C (94°C 60 s, 65°C 60 s, 72°C 60 s).

The product of reaction 2-3 was ligated into pGEM-5Zf(+) using the incorporated NdeI and SacI restriction sites. Ligation mixture was electroporated into XL1-Blue and clones were confirmed by DNA sequencing. The confirmed pGEMpospA insert was then subcloned into pET21a to create pETpospA.

The primer

R. rickettsii

17 kDa lipoprotein (GenBank AAA26381) with optimized E. coli codon usage, an NdeI site overlapping the ATG start codon, and a flanking primer sites (Anderson and Tzianabos, 1989).

Addition of the R. rickettsii 17kDa signal sequence to Δ17E2 followed the same strategy as used when creating the pET-pospA construct. Only the primers used to create overlaps between the R. rickettsi signal sequence and Δ17E2 differed. The primer

Rickettsia prowazekii

was subcloned into pET21a to create pET-ricospA.

pETlppospA

A 111 bp oligonucleotide, RICB (5'-CGC CAG GGT TTT CCC AGT CAC

AGG ACG-3'), was synthesized encoding the 21 res. signal sequence of OSPC and with optimized E. coli codon usage, an NdeI site overlapping the ATG start codon, and a flanking primer sites (Anderson and Tzianabos, 1989).

For expression studies of the

R. rickettsii

ospA constructs, 3 ml TB cultures were grown overnight at 30°C, subcultured 1/100 into 5 ml TB broth. Once cultures were actively growing, 14 µl of cultures were added and the remaining 29 cycles annealed at an elevated temperature of 65°C (94°C 60 s, 65°C 60 s, 72°C 60 s). The product of reaction 2-3 was ligated into pGEM-5Zf(+) using the incorporated NdeI and SacI restriction sites. Ligation mixture was electroporated into XL1-Blue and clones were confirmed by DNA sequencing. The confirmed pGEMpospA insert was then subcloned into pET21a to create pETpospA.

The primer

R. rickettsii

was subcloned into pET21a to create pET-ricospA.

pETlppospA

Expression and Purification of [35]C-lipalmate Incorporation

For induction experiments, pGEM1-2 encoding T7 polymerase (Tabor and Richardson, 1985) was cotransformed with each pET21a-based construct into E. coli BL21. Cotransformants were selected overnight at 30°C on MacConkey media (Kan/Amp). pBC-17kDa was co-transformed with pGP1-

Richardson, 1985) was cotransformed with each pET21a-based construct containing appropriate antibiotics were grown overnight at 30°C.

Following subcloning into pGEM-5Zf(+) and DNA sequence confirmation, the 17E2 construct enclosing an R. rickettsii signal sequence was subcloned into pET21a to create pETpospA.

References

Kuzyk et al.