Genome Analyses of Spirochetes: A Study of the Protein Structures, Functions and Metabolic Pathways in *Treponema pallidum* and *Borrelia burgdorferi*

Rajdeep Das, Hedi Hegyi, and Mark Gerstein*

Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, Yale University, PO Box 208114, New Haven, CT 06520, USA

Abstract

We perform a comprehensive genome analysis on two spirochetes, *T. pallidum* and *B. burgdorferi*. First, we focus on the occurrence of protein structures in these organisms. We find that there are only a few spirochete-specific folds, relative to those in other types of bacteria. The most common fold, by far, in the spirochetes is the P-loop NTP hydrolase, followed by the TIM barrel. These folds also happen to be amongst the most multifunctional of the known folds. We also survey the membrane-protein structures in *T. pallidum* and find a notable large family with twelve transmembrane (TM) helices, reflecting the prevalence of 12-TM transporters in bacteria. Then we move to analysis of the metabolic pathways and overall metabolism in the spirochetes, using the metabolic-flux-balancing method. We find that the lipid biosynthesis pathway is absent from the spirochetes. This strongly limits the degree to which these organisms can metabolize NADPH. In turn, we find that the spirochetes distribute flux disproportionately through the glycolytic pathway instead of the NADPH-providing pentose phosphate pathway. Further information is available at http://bioinfo.mbb.yale.edu

Introduction

In the last five years there have been a number of organisms, spanning all three forms of life, whose genomes have been sequenced. Among these organisms, *Borrelia burgdorferi* (Fraser *et al*., 1997) and *Treponema pallidum* (Fraser *et al*., 1998), two pathogenic prokaryotic spirochetes, have generated a lot of interest among the scientific community. In this paper we have analyzed the occurrence of various protein-folds in these two genomes by comparing them to the structural domains in SCOP (Lo Conte *et al*., 2000). Such analyses of structure and fold families are important, as structural knowledge is essential to understand the precise molecular mechanism of the proteins. Comparing two or more complete, evolutionarily related genomes in terms of domains also allows one to define the essential building blocks of a functioning organism, while the differences can highlight the unique, often pathogenesis-related features of a pathogen microbe.

In addition to analyses of patterns in protein-fold occurrence, we have also studied metabolism in the two spirochetes. With the availability of genomic data, it is now possible to draw the metabolic maps of these two organisms, and analyze their metabolic characteristics. Glucose metabolism in *T. pallidum* has been shown to proceed through the Embden-Meyerhoff-Parnas and hexose monophosphate pathways. Lactate, acetate, and pyruvate are produced during glucose metabolism in the organism. Studies have shown that the amount of lactate and acetate produced in *T. pallidum* depends on the amount of dissolved oxygen in its growth medium. Although glycolytic and pentose-cycle enzymes are found in the spirochetes, TCA cycle enzymes are missing from their genomes (Fraser *et al*., 1997; 1998). In the absence of this pathway it is not clear how these organisms synthesize many complex macromolecules for biomass production requiring precursors produced in TCA cycle. In addition to glucose metabolism, lipid metabolism in these organisms is also intriguing. Although spirochetes, when compared to bacteria, are relatively rich in lipids (22% of their dry weight), they lack all the enzymes of fatty acid biosynthesis. Studies have shown that they do not synthesize long chain fatty acids and need an external supply of fatty acids for their survival (Johnson, 1976). In this paper we discuss our analysis of glucose and lipid metabolism in the spirochetes. We have used the flux-balancing method to analyze their metabolic characteristics.

Fold Usage in Spirochetes

We performed a careful structural analysis of the two genomes, using a combination of FastA and PSI-blast searches with the domain sequences of SCOP 1.39, a structural database, as queries, against the two genomic sequences (Altschul, *et al*., 1997; Pearson, 2000). We found structural matches for less than one-fourth of the ORFs, more precisely 289 of the total of 1638 ORFs in *B. burgdorferi* and 252 of the total of 1031 ORFs in *T. pallidum*.

The most common folds are largely the same as in other prokaryotes, as shown in Table 1. The most common fold by far in both organisms is the P-loop containing NTP hydrolase, while the second most common fold, the TIM-barrel, has only about one-third as many matches. Both of these folds belong to the alpha/beta fold class, the most common structural class in bacteria. However, in contrast to most bacteria, including *E. coli*, there are also two abundant alpha-helical folds in the list, the alpha-alpha superhelix and the long helix oligomers. As shown in the table, in *E. coli* these two folds rank very low (62 and 70, respectively). Interestingly, both folds rank also quite high
• MALDI-TOF Mass Spectrometry in Microbiology
  Edited by: M Kostrzewa, S Schubert (2016)
  www.caister.com/malditof

• Aspergillus and Penicillium in the Post-genomic Era
  Edited by: RP Vries, IB Gelber, MR Andersen (2016)
  www.caister.com/aspergillus2

• The Bacteriocins: Current Knowledge and Future Prospects
  Edited by: RL Dorfl, SM Roy, MA Rily (2016)
  www.caister.com/bacteriocins

• Omics in Plant Disease Resistance
  Edited by: V Bhadauria (2016)
  www.caister.com/opdr

• Acidophiles: Life in Extremely Acidic Environments
  Edited by: R Quatrini, DB Johnson (2016)
  www.caister.com/acidophiles

• Climate Change and Microbial Ecology: Current Research and Future Trends
  Edited by: J Marxsen (2016)
  www.caister.com/climate

• Biofilms in Bioremediation: Current Research and Emerging Technologies
  Edited by: G Lear (2016)
  www.caister.com/biorem

• Microalgae: Current Research and Applications
  Edited by: MN Tsialoglou (2016)
  www.caister.com/microalgae

• Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
  Edited by: H Shintani, A Sakudo (2016)
  www.caister.com/gasplasma

• Virus Evolution: Current Research and Future Directions
  Edited by: SC Weaver, M Denison, M Roossinck, et al. (2016)
  www.caister.com/virusvol

• Arboviruses: Molecular Biology, Evolution and Control
  Edited by: N Vasalakis, DJ Gubler (2016)
  www.caister.com/arbo

• Shigella: Molecular and Cellular Biology
  Edited by: WD Picking, WL Picking (2016)
  www.caister.com/shigella

• Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
  Edited by: AM Romani, H Guasch, MD Balaguer (2016)
  www.caister.com/aquaticbiofilms

• Alphaviruses: Current Biology
  Edited by: S Mahalingam, L Herrero, B Herring (2016)
  www.caister.com/alphfa

• Thermophilic Microorganisms
  Edited by: F Li (2015)
  www.caister.com/thermophile

• Flow Cytometry in Microbiology: Technology and Applications
  Edited by: MG Wilkinson (2015)
  www.caister.com/flow

• Probiotics and Prebiotics: Current Research and Future Trends
  Edited by: K Venema, AP Carmona (2015)
  www.caister.com/probiotics

• Epigenetics: Current Research and Emerging Trends
  Edited by: BP Chadwick (2015)
  www.caister.com/epigenetics2015

• Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications
  Edited by: A Burkovski (2015)
  www.caister.com/cory2

• Advanced Vaccine Research Methods for the Decade of Vaccines
  Edited by: F Bagnoli, R Rappuoli (2015)
  www.caister.com/vaccines

• Antifungals: From Genomics to Resistance and the Development of Novel Agents
  Edited by: AT Coste, P Vandeputte (2015)
  www.caister.com/antifungals

• Bacteria-Plant Interactions: Advanced Research and Future Trends
  www.caister.com/bacteria-plant

• Aeromonas
  Edited by: J Graf (2015)
  www.caister.com/aeromonas

• Antibiotics: Current Innovations and Future Trends
  Edited by: S Sánchez, AL Demain (2015)
  www.caister.com/antibiotics

• Leishmania: Current Biology and Control
  Edited by: S Adak, R Datta (2015)
  www.caister.com/leish2

• Acanthamoeba: Biology and Pathogenesis (2nd edition)
  Author: NA Khan (2015)
  www.caister.com/acanthamoeba2

• Microarrays: Current Technology, Innovations and Applications
  Edited by: Z He (2014)
  www.caister.com/microarrays2

• Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications
  Edited by: D Marco (2014)
  www.caister.com/n2
in yeast and in mycoplasmas (data not shown). Two of the folds, the class II aaRS synthetases and the Ferredoxin-like fold, belong to the alpha+beta class, while the rest of the folds in the table are also members of the alpha/beta class. None of the ten most abundant folds in either genome belong to the all-beta class, a highly abundant class in higher organisms.

A more general functional distribution of the most common folds is shown in Figure 1. It shows the 5 most commonly occurring folds in the Swissprot database and the number of different - mostly enzymatic - functions they are associated with (Hegyi and Gerstein, 1999). Most versatile fold, the TIM-barrel has as many as 16 different functions associated with it (it is commonly believed that this number was achieved as a result of convergent evolution, i.e. the fold evolved independently several times). Interestingly, the large majority of the folds, about 70% have only one enzymatic function associated with them (note however, that this analysis was based on single-domain proteins with enzymatic functions).

In B. burgdorferi and T. pallidum we identified 123 and 126 folds, respectively. The two organisms share more than a hundred of their folds, 106 altogether. As shown in Figure 2, there are only a few spirochete-specific folds: T. pallidum has no specific folds compared with E. coli and yeast, and only two compared with E. coli and B. subtilis. These two T. pallidum-specific folds are the 6-bladed beta-propeller (2sil) and a specific Cysteine-proteinase (1gcb). (The codes in parentheses are PDB identifiers with the corresponding chains (Sussman, et al., 1998). The Borrelia also has two specific folds, one of them an endonuclease (1sm, chain A), the other an outer-surface protein (1osp, chain O), occurring exclusively in this organism, in as many as 9 copies, which probably indicates an important pathogenic role for this fold.

Figure 3 shows the phylogenetic tree of 10 completely sequenced organisms, including the two spirochetes (T. pallidum and B. burgdorferi). The tree was constructed based on the fold content of the organisms, in good agreement with the traditional phylogenetic trees derived from pairwise sequence similarity of their ribosomal genes. It shows that T. pallidum and B. burgdorferi are the most closely related to each other among the 10 organisms.

We also analyzed the two genomes for transmembrane helix content. The distribution of the ORFs with transmembrane helices with respect to the number of helices per ORF in T. pallidum is shown in Figure 4. Interestingly, the distribution shows local maximums at 7 and 12. The significance of the 7-transmembrane proteins in higher organisms is well documented, and the local maximum at 12 indicates the important role of the 12-TM transporter proteins in bacteria.

In addition to protein structures and functions, we have also studied glucose and lipid metabolism in the two spirochetes.

Glucose and Lipid Metabolism in Spirochetes

Constraint on NADPH Production

Using genomic data, we have constructed a simplified metabolic map of glucose and lipid metabolism in spirochetes. Analyses of genomic sequences of spirochetes have shown that several metabolic enzymes are absent in T. pallidum and B. burgdorferi. Even though most of the glycolytic enzymes are present, a few are missing in their pentose phosphate pathway. A list of enzymes involved in these two pathways are shown in Table 2, which shows the occurrence of these enzymes in the two organisms based on genome annotation. Note that two enzymes, 6-phosphogluconate lactonase and transaldolase, are missing in both organisms. In contrast to glucose metabolism, most enzymes for lipid metabolism are absent in spirochetes. Based on presence and absence of enzymes, we have drawn a simple metabolic model for glucose and lipid metabolism in spirochetes as shown in Figure 5. In order to minimize complexity, we have not considered all the metabolic intermediates involved in a pathway. Consequently, many of the consecutive reactions were lumped into a single overall reaction. In mixed acid fermentative metabolism, glucose is degraded to lactate and acetate. The pentose phosphate pathway is present in the two spirochetes where glucose-6-phosphate is converted into fructose-6-phosphate and glyceraldehyde-3-phosphate. In the process, two molecules of NADPH are produced for every molecule of glucose-6-phosphate that is being siphoned into pentose pathway. In contrast to the pentose phosphate pathway, the fatty acid biosynthesis pathway requires a large amount of NADPH for condensation of Acetyl-CoA, as shown by the following reaction.

$$8\text{Acetyl-CoA} + 7\text{ATP} + 14\text{NADPH} = \text{Fatty acid (C8)} + 7\text{ADP} + 7\text{Pi} + 7\text{NADP} + 8\text{CoA}$$

In the overall metabolism in a cell, the reducing equivalent generated needs to be consumed so that cellular equilibrium is maintained. Since spirochetes lack the ability to synthesize fatty acids de novo, the NADPH requirement will be limited for them. Therefore, if the metabolic flux through the pentose phosphate pathway is high, there will be an overproduction of NADPH in spirochetes, which will remain unused. This constraint will force the organisms to have a higher flux in the glycolytic route, compared to the pentose phosphate pathway. In this paper, we have performed a preliminary study on this problem.

Pathway Analyses by Flux-Balancing Method

We have analyzed our model metabolic pathway by the flux-balancing method (Fell and Small, 1986; Savinell and Palsson, 1992). There are several studies that used this method and addressed various aspects of metabolism in different organisms. In flux-balancing method a metabolic quasi-steady state is assumed in a cell. This assumption requires that all the metabolic fluxes involved in formation and degradation of any metabolite must balance which leads to following equation (Fell and Small, 1986; Savinell and Palsson, 1992):

$$S \cdot v = b$$

where $S$ is the stochiometric matrix of the catabolic reactions, $v$ is a vector of all the metabolic reaction rates, and $b$ is a vector containing the net metabolic uptake by the cell. We have formulated our model with a target to minimize the use of glucose for maximum synthesis of triglyceride (TG) and solved the above equation for the reaction fluxes. Note that here we have assumed that
Figure 1. The functional distribution of the most diverse folds occurring in Swissprot. The X-axis indicates the number of functions, and the Y-axis denotes the number of folds that have been associated with that many functions. A schematic is shown for each of the 5 functionally most diverse folds.

Table 1. The 10 most frequently occurring folds in *T. pallidum* and *B. burgdorferi*. The numbers indicate how many times the folds were found in these two organisms, and also in *E. coli*. The numbers in parentheses for *E. coli* indicate the ranking of each fold in this organism.

<table>
<thead>
<tr>
<th>Fold Name</th>
<th>Number in <em>T. pallidum</em></th>
<th>Number in <em>B. burgdorferi</em></th>
<th>Number in <em>E. coli</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>P-loop NTP hydrolase</td>
<td>3.24</td>
<td>43</td>
<td>67</td>
</tr>
<tr>
<td>TIM Barrel</td>
<td>3.1</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>like Ribonuclease H</td>
<td>3.47</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>class II aaRS synthetases</td>
<td>4.61</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>alpha-alpha superhelix</td>
<td>1.91</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>like Ferredoxin</td>
<td>4.34</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>adenine NT alpha hydrolase</td>
<td>3.17</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>FAD/NAD(P)-binding domain</td>
<td>3.4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Periplasmic binding proteins - like II</td>
<td>3.82</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>long helix oligomers</td>
<td>1.105</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 2. Two Venn-diagrams, showing the number of shared and unique folds among *T. pallidum, E. coli* and yeast (on the left-hand side), and among *T. pallidum, E. coli* and *Bacillus subtilis*. 
triglyceride is the only form of lipid present in the cell. Triglyceride is synthesized by condensing three molecules of acyl-CoA of long chain fatty acids with glycerol-3-phosphate. In the problem formulation, we have also assumed that there is an overall ATP requirement for cellular maintenance, as specified by reaction 23. There are a total of 24 reactions and 22 metabolites involved in our model. One should also note here that the model we have used in our study does not include other related pathways, and therefore it doesn’t represent actual metabolic condition that is present in the cell. Although this is a simplified model, it provides a basic framework for flux analyses of lipid metabolism in spirochete. Similar studies have been performed where a part of the network is used for flux analyses (Fell and Small, 1986).

Table 2. List of enzymes that are involved in our metabolic model used in the flux analyses. Column 4 and 5 show their occurrences in *T. pallidum* and *B. burgdorferi*. If an enzyme is present in the organism, it is shown by a “+” sign, whereas its absence is shown by “—”.

<table>
<thead>
<tr>
<th>Pathways</th>
<th>Enzyme</th>
<th>EC number</th>
<th><em>T. pallidum</em></th>
<th><em>B. burgdorferi</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolysis</td>
<td>hexokinase</td>
<td>2.7.1.1</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>glucose-6-phosphate isomerase</td>
<td>5.3.1.9</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>aldolase</td>
<td>4.1.2.13</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>triosephosphate isomerase</td>
<td>5.3.1.1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>glyceraldehyde-phosphate dehydrogenase</td>
<td>1.2.1.12</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>phosphoglycerate kinase</td>
<td>2.7.2.3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>phosphoglycerate mutase</td>
<td>5.4.2.1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>enolase</td>
<td>4.2.1.11</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>pyruvate kinase</td>
<td>2.7.1.40</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>Pentose Phosphate Pathway</td>
<td>glucose-6-phosphate dehydrogenase</td>
<td>1.1.1.49</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>6-phosphoglucono lactonase</td>
<td>3.1.1.31</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>phosphogluconate dehydrogenase</td>
<td>1.1.1.44</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ribulose-phosphate 3-epimerase</td>
<td>5.1.3.1</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>ribose-5-phosphate isomerase</td>
<td>5.3.1.6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>transketolase</td>
<td>2.2.1.1</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>transaldolase</td>
<td>2.2.1.2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Others</td>
<td>lactate dehydrogenase</td>
<td>1.1.1.28</td>
<td>+(28)</td>
<td>+(27)</td>
</tr>
<tr>
<td></td>
<td>phosphoenolpyruvate carboxykinase</td>
<td>4.1.1.32</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>glycerol-3-phosphate dehydrogenase</td>
<td>1.1.1.94</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>pyruvate synthase</td>
<td>1.2.7.1</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>phosphate acetyltransferase</td>
<td>2.3.1.8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>acetate kinase</td>
<td>2.7.2.1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>NADH oxidase</td>
<td>1.6.-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Figure 5. Simplified metabolic model for glucose and lipid metabolism in *T. pallidum* and *B. burgdorferi*. Reaction-numbers are numbered shown beside the arrows. Abbreviations used for the metabolites are as follows: Glu-6P (Glucose-6-phosphate), Fru-6P (Fructose-6-phosphate), Fru-1,6P2 (Fructose-1,6-biphosphate), GAP (Glyceraldehydes phosphate), DHAP (Di-hydroxy acetone phosphate), PEP (Phosphoenol pyruvate), Gro-3P (Glycerol-3-phosphate), Oxac (Oxaloacetate). Glucose and fatty acids are transported into cell from the extracellular medium. Since water forming NADH oxidase is present in both the organism, NADH is oxidized to NAD⁺ in the spirochetes as shown in reaction 24.

The results of our flux analyses are shown in Figure 6. The results indicate that the metabolic flux in spirochetes doesn’t pass through the pentose phosphate pathway but goes along the glycolytic route, whereby spirochetes avoid an overproduction of NADPH. This is a direct result of absence of fatty acid biosynthesis pathway in the organisms discussed earlier. Analyses also show that there is a net synthesis of lactate and acetic acid in the process with a flux split ratio of 12:1. This result conforms to the previous observation that lactate and acetate are two predominant end products in *T. pallidum*’s anaerobic glucose metabolism (Barbieri and Cox, 1981). Our observation that the metabolic flux doesn’t go through the pentose phosphate route implies that the enzymes involved in this pathway could either be greatly modified so that they became less efficient or they could be lowly expressed in the spirochetes.
Conclusion

We have surveyed the protein-folds in *T. pallidum* and *B. burgdorferi*. We have found that they have few unique folds, and the NTP hydrolyase fold is the most common fold. We have also studied the glucose and lipid metabolism in spirochetes. We have performed flux analyses on these two pathways. Our results show that in absence of fatty acid biosynthesis pathway, metabolic flux in *T. pallidum* and *B. burgdorferi* is constrained and is distributed disproportionately in favor of glycolytic pathway.

Acknowledgement

MG acknowledges support from the Keck Foundation and the NIH.

References


