Lactic Acid Bacteria as Probiotics

Åsa Ljungh* and Torkel Wadström

Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-223 62 Lund, Sweden

Abstract
A number of Lactobacillus species, Bifidobacterium sp, Saccharomyces boulardii, and some other microbes have been proposed as and are used as probiotic strains, i.e. live microorganisms as food supplement in order to benefit health. The health claims range from rather vague as regulation of bowel activity and increasing of well-being to more specific, such as exerting antagonistic effect on the gastroenteric pathogens Clostridium difficile, Campylobacter jejuni, Helicobacter pylori and rotavirus, neutralising food mutagens produced in colon, shifting the immune response towards a Th1 response, and thereby alleviating allergic reactions, and lowering serum cholesterol (Tannock, 2002). Unfortunately, most publications are case reports, uncontrolled studies in humans, or reports of animal or in vitro studies.

Whether or not the probiotic strains employed shall be of human origin is a matter of debate but this is not a matter of concern, as long as the strains can be shown to survive the transport in the human gastrointestinal (GI) tract to and colonise the human large intestine. This includes survival in the stressful environment of the stomach – acidic pH and bile – with induction of new genes encoding a number of stress proteins. Since the availability of antioxidants decreases rostrally in the GI tract production of antioxidants by colonic bacteria provides a beneficial effect in scavenging free radicals. LAB strains commonly produce antimicrobial substance(s) with activity against the homologous strain, but LAB strains also often produce microbicidal substances with effect against gastric and intestinal pathogens and other microbes, or compete for cell surface and mucin binding sites. This could be the mechanism behind reports that some probiotic strains inhibit or decrease translocation of bacteria from the gut to the liver. A protective effect against cancer development can be ascribed to binding of mutagens by intestinal bacteria, reduction of the enzymes β-glucuronidase and β-glucosidase, and deconjugation of bile acids, or merely by enhancing the immune system of the host. The latter has attracted considerable interest, and LAB have been tested in several clinical trials in allergic diseases. Characteristics ascribed to a probiotic strain are in general strain specific, and individual strains have to be tested for each property. Survival of strains during production, packing and storage of a viable cell mass has to be tested and declared.

Introduction
Probiotics are defined as “living micro-organisms, which upon ingestion in certain numbers, exert health benefits beyond inherent basic nutrition” (Guarner and Schaafsma, 1998; Tannock, 2002) but interest in this area was initiated by Metschnikov 100 years ago (Metschnikoff, 1907). Most probiotic microorganisms belong to Lactic Acid Bacteria (LAB), such as Lactobacillus sp, Bifidobacterium sp and Enterococcus sp (Klein et al., 1998). The yeast Saccharomyces boulardii has been studied extensively (Elmer et al., 1999) and also other bacterial species, like Bacillus sp (Senesi et al., 2001) and Clostridium butyricum (Takahashi et al., 2004). In some countries the use of Enterococcus sp as a probiotic has been questioned because of safety aspects with regard to transfer of genes conferring antibiotic resistance (Lund and Edlund, 2001). Most scientists agree that probiotic strains shall be able to survive transit through the gastric acid environment as well as exposure to bile and pancreatic juice in the upper small intestine to be able to exert beneficial effects in the lower small intestine and the colon, although there are convincing data on beneficial immunological effects also from dead cells (Mottet and Michetti, 2005). Best effect is achieved if the microorganisms colonise the intestinal surface mucus layer since they then can affect the intestinal immune system, displace enteric pathogens, provide antioxidants and antimutagens, and possibly other effects by cell signalling. That intake of LAB influences multiple systems was elegantly shown for Lactobacillus GG using microarray analysis (Di Caro et al., 2005). One month treatment resulted in up-regulation of 334 genes and down-regulation of 82 genes involved in inflammation, apoptosis, cell-cell signalling, cell adhesion and differentiation and signal transcription and transduction.

In recent years, multiple reports have described beneficial effects from various aspects on important diseases, like intestinal infections, inflammatory bowel disease (IBD), and allergy by addition of selected strains to food products, often together with fiber or a prebiotic substance. In many countries, there are now several probiotic products on the market but the documentation is often based upon case reports, animal studies or uncontrolled small clinical trials. Furthermore, there is no general acceptance on how to characterize probiotic microorganisms, and few products declare the actual content of live microorganisms.

Cell surface properties mediating adhesion
Mechanisms of adherence to an epithelial surface involve both receptor-specific binding and charge and hydrophobic interaction. LAB commonly express cell surface hydrophobicity (CSH) as measured by the Salt Aggregation Test (SAT), contact angle and adhesion to xylene (Wadström et al., 1987; Strus et al., 2001). Some

*For correspondence: Asa.Ljungh@med.lu.se
Further Reading

Caister Academic Press is a leading academic publisher of advanced texts in microbiology, molecular biology and medical research. Full details of all our publications at caister.com

- **MALDI-TOF Mass Spectrometry in Microbiology**
 Edited by: M Kostrzewa, S Schubert (2016)
 www.caister.com/maldi2of

- **Aspergillus and Penicillium in the Post-genomic Era**
 Edited by: RP Vries, IB Gelber, MR Andersen (2016)
 www.caister.com/aspergillus2

- **The Bacteriocins: Current Knowledge and Future Prospects**
 Edited by: RL Dorit, SM Roy, MA Riley (2016)
 www.caister.com/bacteriocins

- **Omics in Plant Disease Resistance**
 Edited by: V Bhadauria (2016)
 www.caister.com/opdr

- **Acidophiles: Life in Extremely Acidic Environments**
 Edited by: R Quatrini, DB Johnson (2016)
 www.caister.com/acidophiles

- **Climate Change and Microbial Ecology: Current Research and Future Trends**
 Edited by: J Marxsen (2016)
 www.caister.com/climate

- **Biofilms in Bioremediation: Current Research and Emerging Technologies**
 Edited by: G Lear (2016)
 www.caister.com/biorem

- **Microalgae: Current Research and Applications**
 Edited by: MN Tsaloglou (2016)
 www.caister.com/microalgae

- **Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives**
 Edited by: H Shintani, A Sakudo (2016)
 www.caister.com/gasplasma

- **Virus Evolution: Current Research and Future Directions**
 Edited by: SC Weaver, M Denison, M Roossinck, et al. (2016)
 www.caister.com/virus2

- **Arboviruses: Molecular Biology, Evolution and Control**
 Edited by: N Vasilakis, DJ Gubler (2016)
 www.caister.com/arbo

- **Shigella: Molecular and Cellular Biology**
 Edited by: WD Picking, WL Picking (2016)
 www.caister.com/shigella

- **Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment**
 Edited by: AM Romani, H Guasch, MD Balagué (2016)
 www.caister.com/aquaticbiofilms

- **Alphaviruses: Current Biology**
 Edited by: S Mahalingam, L Herrero, B Herring (2016)
 www.caister.com/alpha

- **Thermophilic Microorganisms**
 Edited by: F Li (2015)
 www.caister.com/thermophile

- **Flow Cytometry in Microbiology: Technology and Applications**
 Edited by: MG Wilkinson (2015)
 www.caister.com/flow

- **Probiotics and Prebiotics: Current Research and Future Trends**
 Edited by: K Venema, AP Carmo (2015)
 www.caister.com/probiotics

- **Epigenetics: Current Research and Emerging Trends**
 Edited by: BP Chadwick (2015)
 www.caister.com/epigenetics2015

- **Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications**
 Edited by: A Burkovski (2015)
 www.caister.com/cory2

- **Advanced Vaccine Research Methods for the Decade of Vaccines**
 Edited by: F Bagnoli, R Rappuoli (2015)
 www.caister.com/vaccines

- **Antifungals: From Genomics to Resistance and the Development of Novel Agents**
 Edited by: AT Coste, P Vandeputte (2015)
 www.caister.com/antifungals

- **Bacteria-Plant Interactions: Advanced Research and Future Trends**
 www.caister.com/bacteria-plant

- **Aeromonas**
 Edited by: J Graf (2015)
 www.caister.com/aeromonas

- **Antibiotics: Current Innovations and Future Trends**
 Edited by: S Sánchez, AL Demain (2015)
 www.caister.com/antibiotics

- **Leishmania: Current Biology and Control**
 Edited by: S Adak, R Datta (2015)
 www.caister.com/leish2

- **Acanthamoeba: Biology and Pathogenesis (2nd edition)**
 Author: NA Khan (2015)
 www.caister.com/acanthamoeba2

- **Microarrays: Current Technology, Innovations and Applications**
 Edited by: Z He (2014)
 www.caister.com/microarrays2

- **Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications**
 Edited by: D Marco (2014)
 www.caister.com/in2

Order from caister.com/order
LAB coaggregate with cells of the same strain or with cells from other species (Kmet et al., 1995; Roos et al., 1999; Kolenbrander, 2000). This mechanism may facilitate adhesion, e.g. to mucus. LAB can also express binding of extracellular matrix molecules (ECM), like collagens, fibronectin and vitronectin which may be shed from the epithelium to the mucus layer, and to mucus components (Alegjung et al., 1994; Sillanpää et al., 1995; Howard et al., 2000; Lorca et al., 2002A). Strains of *L. acidophilus*, *L. gasseri*, *L. johnsonii*, *L. crispatus* and others form a Surface (S-) layer which covers the cell surface during growth and may contain substances which mediate adhesion to the intestinal surface (Sillanpää et al., 1995; Smit et al., 2001; Ventura et al., 2002), or convey cell surface hydrophobicity (Van der Mei et al., 2003; Vadillo-Rodríguez et al., 2005). S-layers show a high similarity of their amino acid composition but show small general sequence similarity (Ävall-Jääskeläinen and Palva, 2005). *Lactobacillus* S-layers have smaller subunits than other S-layers and have a high-predicted pl value. In *L. johnsonii* NCC533 (La1), elongation factor Tu was identified as a mediator of adhesion to intestinal epithelium as well as to mucoproteins (Granato et al., 2004), and in *L. brevis* an epithelial cell- and fibronectin-binding activity was identified in the S1pA of the S-layer (Hyönen et al., 2002). S-layer proteins have been identified in several species of *Lactobacillus* and shown to mediate adhesion as well as being used as antigen delivery vehicles (Ävall-Jääskeläinen and Palva, 2005). S-layers may also protect the cells from host defense mechanisms.

Cell-surface proteins have been shown to mediate adhesion to mucus by various LAB, and one high-molecular protein from *L. reuteri* has been purified (Kirjavainen et al., 1998; Roos and Jonsson, 2002). Maximal binding was achieved at pH 4–5, and could be partially inhibited by fetuin, indicating a lectin-like interaction, as earlier described for collagen binding (Alegjung et al., 1994). Glycolipid-binding and haemagglutinating activity by *L. reuteri* and by *L. plantarum* possibly also involves one or more adhesins (Mukai et al., 1998; Adlerberth et al., 1996). Strains of *Bifidobacterium* sp with acquired resistance to bile generally expressed increased CSH and adhered to human mucus to a higher extent than the original variants (Gueimonde et al., 2005). Several bile-resistant variants expressed higher CSH than the original variants but there was no direct correlation between adhesion and CSH. Since the intestinal epithelial cells are covered by mucus screening of adhesion to tissue culture cells, such as Caco-2 or HT29 has limited value in predicting in vivo adhesion (Blum et al., 1999). It is also important to study adhesion to different parts of the gastrointestinal (GI) tract since adhesion is likely to differ between the different compartments (Ouweland and Salminen, 2003). Interestingly, LAB strains showed no host specificity in adhesion to intestinal mucus from various hosts (Rinkinen et al., 2003).

Survival within the gastrointestinal tract

Lactobacillus sp and *Bifidobacterium* sp show a moderate tolerance to acid pH during 90 min incubation which is decreased after 2 h but individual strains vary considerably (Table 1) (Charteris et al., 1998). Acid tolerance can be mediated by membrane ATPases as described for *L. acidophilus* (Lorca and Font de Valdez, 2001), *B. lactis* and *B. animalis* (Matsumoto et al., 2004). In the presence of milk or other food products the resistance was significantly higher (Saxelin et al., 1999). Most LAB were susceptible to bovine and porcine bile in *vitro*. However, they were resistant to human bile which correlated with the survival in the human GIT (Dunne et al., 2001). In *L. reuteri*, bile resistance appeared to be mediated by bile salt hydrolysis (De Boever et al., 2000). This also resulted in precipitation of cholesterol. Similar effects were seen after deconjugation of bile salts by *L. acidophilus* strains (Ahn et al., 2003; Ashar and Prajapathi, 1998). These reactions could possibly be the mechanism behind a reported decrease of serum cholesterol in patients treated with probiotics (Agerbaek et al., 1995; Ashar and Prajapathi, 2000) as well as an antiglomerular effect of *L. bulgaricus* (Doncheva et al., 2002). In *L. acidophilus* NCFM, two genes encoding bile salt hydrolysis were identified (McAuliffe et al., 2005). One of these, *bsHA*, showed significant similarity to bile salt hydrolases (BSH) of *L. johnsonii*, *B. longum* and *Listeria monocytogenes* (McAuliffe et al.; 2005; Pridmore et al., 2004; Tanaka et al., 2000).

Pancreatic juice inhibits growth of multiresistant bacterial strains and for some probiotic bacteria. However, individual strains tolerate growth in media supplemented with pancreatic juice independent of proteolytic activity (Kruszewska et al., 2004). *S. boullardii* survived transit in the GI tract well but better in the presence of dietary fibers (Elmer et al., 1999). *Bacillus* sp as probiotics survive the transit very well since they are in the form of spores (Duc et al., 2004).

Table 1 Survival of Lactic Acid Bacteria (LAB) in the gastrointestinal tract.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to pH 4 for 1 hour</td>
<td></td>
</tr>
<tr>
<td>Resistance to 20% human bile for 1 h</td>
<td></td>
</tr>
<tr>
<td>Adhesion to mucin</td>
<td></td>
</tr>
<tr>
<td>Binding of Extracellular Matrix</td>
<td></td>
</tr>
<tr>
<td>ECM proteins (fibronectin, collagens)</td>
<td></td>
</tr>
<tr>
<td>Production of antioxidant resistant</td>
<td></td>
</tr>
<tr>
<td>Production of antimicrobial substances (bacteriocins and others)</td>
<td></td>
</tr>
</tbody>
</table>
(Bron et al., 2004). In an interesting study on effects of acid, bile-salt and freezing stresses, log-phase cultures of \textit{Lc lactis} ssp lactis adapted better to all three stress forms than \textit{Lc lactis} ssp cremoris. Stationary-phase cultures of both subspecies were quite resistant to all three forms (Kim et al., 1999).

Production of antioxidants

Reactive oxygen species are produced during passage of nutrients through the GI tract. The natural production of host antioxidants decreases rostrally. It is well known that oxidative damage forms part in the pathogenesis of cancer, cirrhosis, atherosclerosis and other chronic diseases. \textit{B. longum} ATCC 15708 and to a lesser extent \textit{L. acidophilus} ATCC 4356 inhibited linoleic acid peroxidation and scavenged free radicals (Liu and Chang, 2000). We measured total antioxidant activity with a colorimetric and scavenged free radicals in the fermentation and preservation of dairy products. A high antioxidant activity whereas this was highly strain dependent among facultatively and obligately heterofermentative lactobacilli (Annuk et al., 2003).

Antimicrobial effects

LAB commonly produce bacteriocins which are peptides with bactericidal activity usually against strains of closely related species. Although bacteriocins may enhance survival of LAB in complex ecological systems interest has focused on prevention of growth of harmful bacteria in the fermentation and preservation of dairy products. It is therefore more interesting with respect to probiotics that individual strains may inhibit growth of or adhesion of pathogenic microorganisms by secreted products, and not merely an effect of acidic pH. The gastric pathogen \textit{Helicobacter pylori} was inhibited by a protein secreted from \textit{L. acidophilus}, and \textit{Escherichia coli} O157:H7 (EHEC) was eradicated in rumen fluid by feed supplement containing \textit{S. cerevisiae} ssp boullardii (Lorca et al., 2001; Bach et al., 2003). Strains of \textit{B. infantis} and \textit{L. salivarius} isolated from healthy Korean infants exerted bactericidal activity against both \textit{Clostridium difficile} and EHEC (Lee et al., 2003A). Out of 24 \textit{Bifidobacterium} strains, six inhibited \textit{H. pylori} through production of a heat-stable compound which was sensitive to protease treatment (Collado et al., 2005). \textit{L. acidophilus} LB produced an extracellular substance which inhibited several enteropathogens \textit{in vivo} and \textit{in vitro}, including \textit{H. pylori} and \textit{Salmonella enterica} var. Typhimurium (Coconnier et al., 1998; Coconnier et al., 2000). \textit{Lactobacillus} treatment also inhibited an adhesion-dependent IL-8 production by \textit{S. enterica}. Three \textit{Pediococcus} sp were shown to produce bacteriocins, sensitive to protease treatment but resistant to amylase and pepsin, with activity against several gram-negative and gram-positive bacteria, such as \textit{Pseudomonas aeruginosa}, Bac. cereus and \textit{S. aureus} (Jamuna and Jeewarathnam, 2004). Faecal isolates from healthy Brazilian volunteers were screened for \textit{in vitro} activity against \textit{Vibrio cholerae} (Silva et al., 2001). One \textit{Lactobacillus} sp and one \textit{Peptostreptococcus} sp showed high \textit{in vitro} activity, and eliminated vibrios from germ-free mice after bi-association. The broad spectrum antibacterial effect of \textit{B. subtilis} 3 is, however, due to secretion of antibiotic substances (Pinchuk et al., 2001).

Out of 9 tested \textit{L. reuteri} strains, two bound to asialo-GM1 and sulfatide, and bound \textit{L. reuteri} strains inhibited binding of \textit{H. pylori} to asialo-GM1 (Mukai et al., 2002). Likewise, adhesion of enterotoxigenic \textit{E. coli} K88 to porcine intestinal mucus was inhibited by simultaneous incubation with \textit{E. faecium} 18C23 (Zin et al., 2000). Enterotoxigenic \textit{E. coli} expressing CFAII, a human gut colonization factor, recognize gangliotetraosylceramide. Binding to this glycolipid was inhibited by a soluble substance from \textit{B. longum} SBT2928 (Fujwara et al., 1999). \textit{L. johnsonii} La1 expresses two carbohydrate-binding specificities, one for O-linked oligomannosides and a second for asialo-GM1, indicating that La1 competes with several enteropathogens for carbohydrate receptors in the intestine (Nesser et al., 2000). Competition for mucosal surface binding sites could also be the mechanism behind the finding that \textit{L. casei} Shirata and \textit{L. rhamnosus} GG could displace bound enterovirulent \textit{E. coli} and \textit{S. enterica} var Typhimurium from Caco-2 cells and from human intestinal mucus (Lee et al., 2003B). Three \textit{Lactobacillus} strains inhibited adhesion of and displaced \textit{S. typhimurium}, \textit{L. monocytogenes} and \textit{C. difficile} (Gueimonde et al., 2001). \textit{L. crispatus} expressing an S-layer inhibited adhesion of \textit{E. coli} to the cell matrix basement membrane (Horie et al., 2002), and \textit{L. acidophilus} R0052 and \textit{L. rhamnosus} R0011 reduced adhesion by EHEC O157:H7 and EPEC O127:H6, as well as cytoskeletal rearrangements (Sherman et al., 2005).

Genetically engineered probiotics represent a novel promising probiotic therapy. Paton and colleagues introduced a lipopolysaccharide with a terminal trisaccharide sequence which binds Shiga toxin with high affinity into a non-pathogenic \textit{E. coli} strain (Paton et al., 2000). Mice colonized with this strain were protected from challenge with a Shiga toxin-producing \textit{E. coli} (EHEC) (Paton et al., 2001). Using a similar approach the same group inserted genes from \textit{Neisseria meningitides} whereby 3 monosaccharides were added to a cell wall polysaccharide. This novel ganglioside resembles the

Fig. 1 Production of antioxidants by Lactic Acid Bacteria (10⁷ cells) measured by a colorimetric assay (Randox, San Diego, USA). For comparison, vitamin C, 100µg, was included.
native GM-1 receptor for E. coli LT-1 so that it binds the toxin tightly (Paton et al., 2005). In vitro, the probiotic strain neutralized 95% of LT, and when mice were injected with LT and the probiotic strain in ileum the fluid secretion was significantly reduced. Heat shock protein 60 (Hsp60 or GroEL) of L. johnsonii La1 was expressed in E. coli, shown to be cell surface associated, to bind to mucin and epithelial cells, and to mediate aggregation of H. pylori but not of other gastrointestinal pathogens (Bergonzelli et al., 2006).

Using a different set-up, it was shown that live probiotic strains L. acidophilus ATCC4356 and Streptococcus thermophilus ATCC19258 protected human epithelial cell lines (HT-29 and Caco-2) from adhesion, invasion and other deleterious effects by enteroinvasive E. coli (Resta-Lenert and Barrett, 2003).

Another mechanism to inhibit pathogens in the gut is by increasing production of intestinal mucins which may provide protection by functioning as a physicochemical barrier and provide receptors for microbes. Small intestinal mucin fragments have been reported to inhibit viral replication (Yolkien et al., 1994). MUC2 and MUC3 gene products dominate in intestinal mucins whereas only MUC2 is present in colonic mucin. L. plantarum 299v was shown to increase expression of MUC2 and MUC3 mRNA in HT29 intestinal cells, and this lead to inhibition of adhesion of enterovirulent E. coli (Mack et al., 1999). Similar results were obtained with other Lactobacillus strains which adhered to different cell lines, Hep-2 and Caco-cells (Forstner and Forstner, 1994; Smith et al., 1995; Mack et al., 2003).

Out of 1200 LAB isolates screened for antifungal activity against Aspergillus fumigatus, 4% showed strong inhibition, and this included inhibition of Rhodotorula mucilaginosa and Penicillium roqueforti, but not Pichia anamala and Kluyveromyces marxianus. Most of the inhibitory strains were L. salivarius but also L. plantarum and P. pentosaceus strains inhibited some fungi (Magnusson et al., 2003).

Studies on infections in the gastrointestinal tract

La1 was earlier reported to have a long-time suppressive effect on H. pylori gut colonization when administered as a whey-based culture supernatant (Michetti et al., 1999). Similar results were obtained when administered in milk (Felley et al., 2001). In a study conducted over 16 weeks, gastric mucosa inflammation, particularly of the antrum was reduced although the effects were fairly weak (Pantoflickova et al., 2003). Live and heat-killed L. johnsonii La1 and L. paracasei ST11 were given to H. pylori-infected children for 4 weeks in a double blind, randomized, controlled study. Administration of live La1 resulted in a moderate decrease of infection as measured by 13C urea breath test (Cruchet et al., 2003). Likewise, administration of live L. casei in milk for 3 weeks gave a slight suppression of H. pylori infection (Cats et al., 2003). This was not related to the concentration of lactic acid. L. gasseri (LG21) suppressed, but did not eradicate, H. pylori infection in humans, concomitant with a decrease of the pepsinogen, PGI/PGII, ratio (Sakamoto et al., 2001). When given to persons with an asymptomatic H. pylori infection, yoghurt containing 107 CFU of both B. lactis Bb12 and L. acidophilus La5 twice daily for 6 weeks H. pylori infection was suppressed as measured by 13C urea breath test (Wang et al., 2004). In a mouse study, L. casei Shirôma administered for 9 months reduced H. pylori colonisation of antrum as well as corpus, and this was concomitant with a reduced intensity of mucosal inflammation (Sgouras et al., 2004).

Symptomatic H. pylori infections are commonly treated with 2 or 3 antibiotics for one week. Side effects are common. In a triple blind, placebo-controlled study patients were given L. rhamnosus GG, S. boulardii, a combination of Lactobacillus sp and Bifidobacterium sp, or placebo (Cremononi et al., 2002). All three probiotic treatments reduced side effects in the form of incidence of diarrhoea and taste disturbance, significantly.

S. boulardii inhibited not only growth of S. typhimurium and Yersinia enterocolitica but also cell invasion of HeLa cells which correlates with reports on clinical efficiency (Zbinden et al., 1999). Oral feeding of BALB/c mice with B. lactis confers protection against subsequent challenge with S. typhimurium (Shu et al., 2000). Apart from a ten-fold increase in survival rate, pathogen translocation to viscera was reduced, and this was concomitant with enhanced immune reactions.

Antibiotic-associated colitis is usually caused by proliferation of C. difficile as a result of treatment with broad-spectrum antibiotics. Nosocomial spread within hospitals is common. The clinical presentation varies from mild to severe, with a recurrent form as more serious, often requiring a prolonged antibiotic treatment. There have been a number of case reports and open studies showing beneficial effect of Lactobacillus GG and S. boulardii. In one double-blind, placebo-controlled study with L. plantarum 299v with metronidazol or placebo recurrence of colitis was prevented in 7/11 patients compared to 3/9 receiving placebo (Wullt et al., 2003). Lactobacillus GG (20 x 109 cfu/d for 14 days) did not reduce the rate of occurrence of antibiotic-associated diarrhoea in a randomized, placebo-controlled trial of 302 hospitalized patients (Thomas et al., 2001) whereas in a similar study by Vanderhoof and colleagues the incidence of diarrhoea in the Lactobacillus GG group decreased from 26% to 8% and the duration decreased with more than one day (Vanderhoof et al., 1999). A meta-analysis of nine randomised, double blind, placebo-controlled studies on prevention of antibiotic-associated colitis showed significant benefit with the use of S. boulardii, Lactobacillus GG and a combination of B. longum and L. acidophilus but concluded that the efficacy of probiotics in treating antibiotic-associated diarrhoea remains to be proven, and that larger trials are needed (D’Souza et al., 2002).

Interestingly, S. boulardii produces a protease which degrades both C. difficile toxin A and B, the main virulence factors in antibiotic-associated colitis (Castagliuolo et al., 1999).

Viral enteric infections, such as rotavirus, have been the subject of several studies. Whereas breast-feeding effectively prevented nosocomial rotavirus infection, L. rhamnosus GG was ineffective (p=0.003) (Mastretta et al., 2002). However, L. sporogenes (108 cells/day during one year) had a preventive effect on the incidence as well as duration of acute rotavirus in a placebo-controlled
double-blind study in India (Chandra, 2002). In a double-blind placebo-controlled trial with a mixture of three L. rhamnosus strains (Lakcid®, Biomed, Lublin, Poland) the duration of rotavirus diarrhea was shortened but not diarrhea of other etiology (Szymanski et al., 2006).

Probiotics have been administered to patients with acute diarrhea of various aetiologies in several studies. Particularly in studies in children one can assume that rotavirus and enterotoxigenic E.coli (ETEC) dominate as enteric pathogens. L. acidophilus LB added to the oral rehydration therapy during acute diarrhea reduced the duration of diarrhea in treated children compared to the placebo group (Simakachorn et al., 2000). A fermented formula with B. breve c50 and St. thermophilus 065, given daily during 5 months reduced the severity of acute diarrhea in a large study in France whereas the incidence and duration of diarrhea did not differ significantly between the groups (Thibault et al., 2004).

In New Delhi, India, children with acute diarrhea were allocated to three groups, one receiving fermented milk (Actimel®, Danone, Paris, France) with 10^9/g of L. casei DN 114001, L. bulgaricus and St. thermophilus, the second Indian Dahi containing the same amounts of Lc. lactis, L. lactis cremoris and Ln. mesenteroides, and the control group heated yoghurt with no live bacteria (Agarwal and Bhasin, 2002). The preparations were given three times daily along with rehydration therapy. Both regimes containing live bacteria shortened the duration of diarrhoea significantly. A combination of L. rhamnosus 19070–2 and L. reuteri DSM 12246 reduced the duration of diarrhoea in hospitalized children as well as in children attending day-care centers (Rosenfeldt et al., 2002A; Rosenfeldt et al., 2002B).

Infants (no 201) were given humanized cow’s milk formula with B. lactis (BB-12, 10^7 CFU/g) or L. reuteri (SD 2112, 10^5 CFU/g) for 12 weeks including follow-up. Formula without supplementation was the control. Breastfeeding was not practised from 2 weeks before the study. Children fed formula supplemented with probiotic strains had fewer and shorter episodes of diarrhoea but there was no difference in the incidence of respiratory illnesses (Weizman et al., 2005). Probiotic supplementation of infant formulas is still a matter of debate (Ghisolfi et al., 2002; Selimoğlu, 2006).

Recently, for the first time a probiotic was shown to prevent infection with a protozoan, Giardia intestinalis, including protection against mucosal damage in germbils (Humen et al., 2005). This confirms an earlier study, showing that a heat-labile low-molecular extracellular product of L. johnsonii La1 inhibited proliferation of G. intestinalis trophozoites in vitro (Pérez et al., 2001).

Influence on the immune system

During the 1990s much interest focused on the effect of LAB on specific as well as non-specific immune functions. Certain strains were found to enhance phagocytosis, secrete lysosomal enzymes and reactivate oxygen species (Gill, 1998), confirmed in humans consuming L. acidophilus La1 or B. bifidum Bb 12 for 3 weeks (Schiffrin et al., 1997). Feeding humans Lactobacillus GG increased the immunogenicity of an oral rotavirus vaccine (Isolauri et al., 1995). Several strains of mainly lactobacilli were found to induce IL-12 or IL-10, i.e. either a pro- or anti-inflammatory response (Th1 or Th2). L. casei Shirota induced production of proinflammatory cytokines IL-12 with subsequent production of IFN-γ in murine splenocytes (Kato et al., 1999). Heat-killed L. casei and L. fermentum cells, lipoteichoic acid (LTA) and crude cell extracts, likewise induced a proinflammatory response in the form of TNF-α in a macrophage cell line (Table 2). This was preceeded by transcripotion of NF-κB, and shown to be mediated through Toll-like receptor (TLR) 2 (Matsuguchi et al., 2003). Unidentified bacterial components of L. paracasei Ncc2461 induced CD4+ T cells in murine splenocytes, producing IL-10 and TGF-β (Von der Weid et al., 2001). In a study on a macrophage cell line, J774.1, eleven strains of lactobacilli induced production of both pro- and anti-inflammatory cytokines in macrophages (Morita et al., 2002). In another macrophage cell line, RAW 264.7, coinoculation of culture medium from L. rhamnosus GG with LPS or LTA resulted in inhibition of TNF-α production but not of IL-10 synthesis (Peña and Versalovic, 2003). Coincubation of the same growth medium also decreased TNF-α production by macrophages activated by growth medium from H. pylori, showing that adhesion not is necessary for immune stimulation. In HT-29 cells, released anti-inflammatory products from B. breve and St. thermophilus were shown to retain their inhibitory effect after transepithelial transport and also to resist digestive enzymes, indicating capability of functions in vivo (Ménard et al., 2004). Oral administration of L. reuteri and L. brevis strains to BALB/c mice induced a proinflammatory response in the form of TNF-α, IL-2 and/or IL-1β in the gut (Maassen et al., 2000). Oral administration of L. rhamnosus, L. acidophilus or B. lactis (10^9 cells/day) enhanced immunoreactivity of spleen cells and phagocytes, and enhanced serum antibody response to orally and systemically administered antigens (Gill et al., 2000). A mixture of 3 strains, L. acidophilus, L. delbrueckii ssp bulgaricus and B. bifidum, designed as Trilac® (Krotex, Warszawa, Poland) induced a predominant anti-inflammatory response in monocyes (Michalkiewicz et al., 2003). L. casei Shirota improved murine colitis by inhibiting translocation of NF-κB and production of IL-6 (Matsumoto et al., 2005).

L. rhamnosus GG was given orally (2 × 10^10 cfu) daily for 4 weeks to atopic children which generally present with a Th2 picture. This resulted in a significant elevation of the serum concentration of IL-10 (Pessi et al., 2000). This finding was later confirmed in a placebo-controlled trial in atopic children (Kalliomäki et al., 2001). In a randomized,
controlled trial, administration of *L. fermentum* PCC decreased the severity of eczema (Weston *et al.*, 2005).

Probiotics given to pregnant women reduced the incidence of atopic disease in the breast-fed infants (Rautava *et al.* 2002). When *L. reuteri* DSM 12246 and *L. rhamnosus* 19070-2 were administered for 6 weeks to children with eczema there was a significant decrease in the frequency of gastrointestinal symptoms, and the lactulose/mannitol ratio was decreased, indicating a reduced permeability of the intestinal epithelium (Rosenfeldt *et al.*, 2004). Interestingly, the severity of eczema was also reduced which may support earlier proposals that impairment of the intestinal mucosal barrier is a factor in the pathogenesis of atop dermatitis. The effects were more pronounced in children with IgE mediated allergy.

Dendritic cells (DC) are present throughout the GI tract, and play a central role in the regulation of the Th1, Th2 and Th3 balance. In DC, Christensen and coworkers showed that all lactobacilli tested induced maturation of the cells. *L. reuteri* DSM12246 inhibited the proinflammatory cytokine response by *L. casei* CHCC3139, while the level of IL-10 production remained stable (Christensen *et al.*, 2002). DC treated with VSL#3, a probiotic cocktail containing 8 different strains of *Bifidobacterium* and *Lactobacillus* sp and *St salivarius* ssp *thermophilus* (Sigma-Tau Pharmaceuticals Inc., Italy) for 3 days resulted in substantial production of IL-10 (Drakes *et al.*, 2004). Likewise, VSL#3 inhibited the effects of various proinflammatory stimuli in HT-29 cells and in mice (Jijon *et al.*, 2004). A new *in vitro* screening method for immunomodulatory properties of LAB strains using chicken spleen cells has been developed and validated (Koenen *et al.*, 2004).

An important part of the mucosal defense in the intestine is production of defensins, small peptides with broad spectrum of antimicrobial activity (Ganz, 2003). Whereas human beta defensin (hBD)-1 is expressed in normal colonic mucosa hBD-2 and hBD-3 are expressed in an inflamed gut mucosa, especially in inflammatory bowel disease (Wehkamp *et al.*, 2003). Heat-killed as well as live strains of *E. coli* Nissle 1917 and several LAB of different species activated expression of the hBD-2 gene in Caco-2 cells but EPEC and *E. coli* K12 did not (Wehkamp *et al.*, 2004). Culture supernatant or purified LPS failed to induce hBD-2 expression. Activation of hBD-2 was regulated by NF-κB. This may be a hitherto overlooked protective mechanism by probiotic bacteria.

Production of β-galactosidase by supplied probiotic strains has been proposed to alleviate symptoms of lactose intolerance (Savaiano and Levitt, 1987). This property is declared in some available probiotic strains (Kruszewska *et al.*, 2002). In a study in gnotobiotic and conventional mice on oral tolerance to β-lactoglobulin, administration of *L. paracasei* NCC 2461 to both groups of mice provided better suppression of humoral and cellular responses than *L. johnsonii* NCC 533 or *B. lactis* Bb12 (NCC362), and significantly better than gnotobiotic mice challenged with β-lactoglobulin (Prioulit *et al.*, 2003).

Based on findings from clinical and animal studies on a stimulatory effects on gut antigen-presenting cells to promote protection and switch regulatory mechanism, the term “immunobiocots” was suggested instead of “probiotics” (Clancy, 2003).

Studies in inflammatory bowel disease

Inflammatory bowel disease (IBD), mainly Mb Crohn and Ulcerative colitis, UC, are chronic inflammations of the terminal ileum and colon with unknown autoetiology but three pathogenic factors interact – genetic susceptibility, immune dysregulation and environmental triggering events (Shanahan, 2004). Attempts to link a certain microbe as an aetiological agent have been in vain. However, several findings link the microbial intestinal flora to the pathogenesis of IBD, such as (i) a faecal stream diversion has a beneficial effect on the clinical course, and relapse coincides with restoration of faecal stream, (ii) patients with Crohn’s disease have serum antibody response to their bacterial intestinal flora, (iii) inflammation occurs in areas with highest bacterial counts, and (iv) experimental colitis cannot be induced in gnotobiotic animals.

A few experimental studies support further clinical trials with probiotics in human patients with IBD. First, IBD patients have a changed ileal microbial flora with increased numbers of entererivulent *E.coli*, *Bacteroides* sp and enterococci, and decreased numbers of *Lactobacillus* and *Bifidobacterium* sp (Swidsinski *et al.*, 2002). Madsen and coworker studied IL-10 mice which spontaneously develop patchy colitis similar to human Crohn’s disease. Administration of the probiotic mixture VSL#3 restored the epithelial barrier function, which is impaired in UC, and reduced TNFα and IFN-γ secretion (Madsen *et al.*, 2000; Schmitz *et al.*, 1999). In mouse colonic epithelial cells, VSL#3 was shown to inhibit the proteasome and the activation of NF-κB (Petrof *et al.*, 2004). Instead, hsp:s with cytoprotective effect on the epithelium, were induced. The attenuation of experimental murine colitis by probiotics was shown to be mediated by their own DNA which induced anti-inflammatory effect by signalling via TLR9 (Rachmilewitz *et al.*, 2004). Thus, live microorganisms were not required. Also *L. plantarum* 299v and *L. salivarius* have been shown to attenuate colitis in placebo-controlled trials (Schultz *et al.*, 2002; McCarthy *et al.*, 2003). These effects could, in part, have been mediated by effects reported from an *in vitro* study on intestinal cells, showing that *L. rhamnosus* GG activated the anti-apoptotic Akt/protein kinase B and inhibited activation of the pro-apoptotic p38/mitogen-activated protein kinase (Yan and Polk, 2002). This resulted in inhibition of cytokine-induced apoptosis and increased survival of intestinal cells in an environment usually dominated by pro-apoptotic cytokines. In DSS-induced (dextran sodium sulphate) UC in mice *L. casei* Shirota did not prevent colitis but improved clinical parameters, particularly when given simultaneously with the DSS (Herias *et al.*, 2005).

In small, but well controlled studies on patients with chronic pouchtis administration of VSL#3 prevented relapses better than placebo (p<0.001), and, given as prophylaxis, prevented onset of acute pouchtis (p<0.05) (Gionchetti *et al.*, 2000; Gionchetti *et al.*, 2003). In a study on maintaining remission of pouchtis, patients were randomized to receive VSL#3 or placebo once daily for one year. VSL#3 was effective in maintaining remission
(p<0.0001)(Mimura et al., 2004). Children with Crohn’s disease, treated with L. rhamnosus GG had a significantly reduced score of activity 4 weeks after initiation of therapy (Gupta et al., 2000).

In another study on UC patients, one month administration of B. longum together with a probiotic, Synergy 1® (Orafti, Ticuen, Belgium) an inulin-oligofructose growth substrate, resulted in clinical improvement in the treatment group, significant compared to placebo (Furrie et al., 2005). This shows a beneficial effect of co-administration of the probiotic strain(s) with a growth-promoting substrate, a probiotic, something which has received much attention during the latest years (Roberfroid, 2001). The most commonly used are non-digestible oligosaccharides which are not absorbed in the upper gut, like fructo-oligosaccharides, but also the polysaccharide inulin which mainly is fermented by bifidobacteria (Losada and Olleros, 2002; Schulz et al., 2004).

Recently, IBD has been reproducibly induced in IL-10-deficient mice by introduction of an entero-hepatic Helicobacter, H. hepaticus. Pretreatment of the mice with L. reuteri and L. paracasei resulted in reduced intestinal inflammation and lower levels of proinflammatory colonic cytokines (Peña et al., 2005).

Studies in other diseases of colon

Irritable bowel syndrome (IBS) is a common functional disorder of the lower intestine, affecting both adults and children, associated with abdominal distention, diarrhoea, constipation, bloating and urgency to defaecate. The aetiology is unknown. However, the microbial intestinal ecosystem is changed compared to normal individuals (Balsari et al., 1982; King et al., 1998). Some studies in adult patients show reduction of symptoms (Brigidí et al., 2001; Sen et al., 2002; Kim et al., 2003) whereas others failed to show efficacy (Barbara et al., 2000). In a recent study on children with IBS Lactobacillus GG with inulin (10⁹ CFU twice daily for 6 weeks) was not superior to inulin alone in relieving abdominal pain but reduced abdominal distention (Bausserman and Michail, 2005).

Very low birth weight neonates receiving B. infantis, B. bifidus and S. thermophilus 10⁹ CFU/day (Solgar®, Israel) had a significantly reduced incidence and severity of necrotizing enterocolitis (NEC) compared to babies not receiving probiotic treatment (Bin Nun, 2005). Similar results were obtained in a larger study with L. acidophilus and B. infantis (Infloran®, Swiss Serum and Vaccine Institute, Bern, Switzerland) (Lin et al., 2005). The beneficial effect of probiotics in NEC might be due to mitigation of barrier injury. L. plantarum has been shown to inhibit transepithelial migration of neutrophils induced by enteropathogenic E. coli (Michail and Abernathy, 2003), and L. plantarum MF1298 and L. salivarius DC5 to increase transepithelial resistance of polarized monolayers of Caco-2 cells (Klingberg et al., 2005). Furthermore, L. casei DN-114 administered to rats with TNBS-induced (trinitrobenzen sulphonic acid) transmural inflammation showed smaller areas of mucosal injury, and lower and less frequent translocation than control rats (Llopis et al., 2005). This could be one of the mechanisms behind reduction of bacterial infection rates after liver transplantation in patients treated with Synbiotic 2000® (Medipharm, Kägeröd, Sweden), a composition of four LAB and fibers (Rayes et al., 2005).

Effects on plasma lipid levels

Based on observations in patients treated with fermented dairy products and one report on assimilation of cholesterol by L. acidophilus strains (Gilliland et al., 1985) it has been proposed that probiotics could influence the serum lipid metabolism beneficially. Probiotic bacteria can ferment indigestible carbohydrates and produce short-chain fatty acids in the intestine. These inhibit cholesterol synthesis in the liver and/or redistribute cholesterol from plasma to the liver, thereby decreasing levels of lipids in the blood. Individual strains can deconjugate bile salts and may hamper absorption of cholesterol from the gut (De Boever et al., 2000; Doncheva et al., 2002; Ahn et al., 2003). Rats fed on a cholesterol-enriched diet were given youghurt and soy-yoghurt with B. lactis Bb-12 or B. longum Bb-46 for 6 weeks (Adb El-Gawad et al., 2005). The groups fed on the supplemented diet had significantly lower plasma and liver cholesterol levels and higher faecal excretion of bile acids than the rats fed cholesterol-enriched diet alone. The supplement containing Bb-46 was more effective than Bb-12, which emphasizes important differences between individual strains. The strains have so far not been characterized for in vitro bile hydrolase production.

Syrian hamsters were fed skim milk fermented with L. casei Shirota for 14 days. The fermented milk lowered the levels of plasma triglyceride both in animals fed cholesterol-free and -enriched diets compared to control animals (Kikuchi-Hayakawa et al., 2000). Probiotics as well as prebiotics have a potential to decrease serum lipid levels but the mechanisms have to be elucidated (Pereira and Gibson, 2002). One mechanism could be through supply of [β] glucans which have a cholesterol-lowering effect per se, and stimulate growth of Bifidobacterium spp. These species commonly produce exopolysaccharides which gives a röy fermented product as recently published in a volunteer study (Nakajima et al., 1992; Biörklund et al., 2005). There are now several clinical studies ongoing to study plasma lipid lowering effects of probiotics administered with or without a dairy product. Results of these are awaited with interest.

Beneficial influence on malignancies

An antitumour effect has been reported by oral intake of LAB in in vitro studies but, since colon carcinogenesis is a multistage process the mechanisms, if validated, remain to be elucidated (Table 3) (Hirayama and Rafter, 1999). A preventive effect on malignant development could be mediated by production of antimutagens and LAB binding of mutagens, and this has been reviewed (Lankaputhra and Shah, 1998). In general, live cells of probiotic bacteria showed higher anti-mutagenic activity, and this was permanent, in contrast to killed cells. In this in vitro study, butyric acid, and to a lesser extent, acetic acid inhibited mutagens. Strains of B. lactis were shown to express antimutagenic properties, probably linked to cell wall constituents. The antimutagenic effect was active also after acid and bile treatment, mimicking the GI transport, and interestingly, enhanced in the presence of
Table 3. Factors which may exert beneficial effects on malignancies.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding of mutagens</td>
<td></td>
</tr>
<tr>
<td>Production of antimutagenic substances</td>
<td></td>
</tr>
<tr>
<td>Inhibition of procarcinogenic enzymes like nitroreductase and β-glucuronidase</td>
<td></td>
</tr>
<tr>
<td>Increased production of β-glucosidase which release flavonoids</td>
<td></td>
</tr>
<tr>
<td>Deconjugation of bile salts</td>
<td></td>
</tr>
<tr>
<td>Binding of heterocyclic amines</td>
<td></td>
</tr>
<tr>
<td>Production of antioxidants and scavenging of ROS</td>
<td></td>
</tr>
<tr>
<td>Production of conjugated linoleic acid from castor oil</td>
<td></td>
</tr>
<tr>
<td>Immunopotentiation</td>
<td></td>
</tr>
</tbody>
</table>

whole milk (Lo et al., 2004). One mechanism for this effect can be binding of mutagens, and heterocyclic amines were shown to be bound to the cell wall of certain bacteria, such as B. longum and other LAB, and thereby be detoxified (Orrhage et al., 1994; Knasmüller et al., 2001). In L. plantarum KL2BA1, however, the antimutagenic effect was mediated by three glycoproteins which are secreted extracellularly (Rhee and Park, 2001).

Antigenotoxic activity against 4-nitroquinoline-1-oxide was shown in in vitro tests for strains of several Lactobacillus species whereas only one L. acidophilus strain inhibited N\textsubscript{9-methyl}N\textsubscript{1-picin}N\textsubscript{2-nitrosoquanidine}. All strains also showed antigenotoxic properties and were viable after the tests (Caldini et al., 2005).

Intake of LAB in fermented milk or other products influence gut flora enzymes, like β-glucuronidase, β-glucosidase and nitroreductase (Wollowski et al., 2001). LAB and Bifidobacteria have lower activities of these enzymes than Enterobacteriaceae, Clostridia and Bacteroides. A daily intake of L. acidophilus and B. bifidum for 3 weeks decreased the activity of nitroreductase but increased the activity of β-glucosidase (Martea et al., 1990). This could be an advantage since β-glucosidase may release flavonoids which have antimutagenic, antioxidative and immune stimulatory effects (Stoner and Mukhtar, 1995). Daily intake of fermented vegetables for 3 weeks decreased the faecal levels of β-glucuronidase and nitroreductase. Most animal and human studies do indicate that feeding certain LAB decrease faecal enzyme levels which may be involved in formation of carcinogens.

Also, beneficial effects can be attributed to immunopotentiating effects by LAB strains. One specific effect was shown by heat-killed L. plantarum L-137 which restored the inhibited IL-12 production in DBA/2 mice with tumors (Murosaki et al., 2000).

Conjugated linoleic acid has been highlighted recently because of its effect to reduce carcinogenesis, atherosclerosis and body fats (Chin et al., 1992; Nicolosi et al., 1997). One LAB strain, L. plantarum JCM 1551 was shown to efficiently produce conjugated linoleic acid from castor oil in the presence of lipase which is an interesting "side effect" of anti-tumor activities of LAB (Ando et al., 2004).

Mycotoxins are well known contaminants of grains and other food raw materials, and e.g. ochratoxin A may accumulate in domestic animals and remain in food products of animal origin (Peztinger and Weidenbach, 2002). Ochratoxin A is carcinogenic, genotoxic, immunosuppressive and nephrotoxic (Peztinger and Ziegler, 2000). In a recent study, strains of Lactobacillus and Lactococcus were shown to be resistant to Ochratoxin A (5–10 μg/disc), and just one strain of L. helveticus was sensitive (0.1 μg/disc) (Piotrowska and Zakowska, 2005). Furthermore, all strains tested reduced the amount of Ochratoxin A in the growth medium as measured after 120 h. L. acidophilus CH-5, L. rhamnosus GG and a couple of other strains reduced the initial level of Ochratoxin A by more than 50% (Piotrowska and Zakowska, 2005). Intake of such LAB may potentially reduce carcinogenic/genotoxic effects of consumption of food contaminated by Ochratoxin A.

Safety
LAB are GRAS=Generally Regarded As Safe organisms. However, there are several case reports in the literature on systemic infections caused by LAB. The vast majority deals with severely immunocompromised patients. We have also to bear in mind that the taxonomy of several LAB has been reconstructed during the last decade, and the use of modern polyphasic taxonomy has reclassified several probiotic strains (Klein et al., 1998; Hoa et al., 2000; Temmermann et al., 2004).

Nevertheless, there are a number of case reports of systemic spread of LAB, including strains of species used as probiotics. Using molecular biology techniques, however, there is probably only one case where the causative agent, in this patient of a liver abscess, was indistinguishable from a strain used as probiotics, L. rhamnosus GG (Rautio et al., 1999). Most patients report ingestion of raw milk or other dairy products, but not all (Pellizzer et al., 1996). There is an overrepresentation of patients with endocarditis (Husni et al., 1997). One patient, subjected to dental extraction because of caries and who reported chewing capsules of lyophilized probiotic strains (L. rhamnosus, L. acidophilus and St. faecalis) presented with endocarditis with growth of L. rhamnosus in blood cultures, indistinguishable from that of the probiotic capsule (Mackay et al., 1998). Another patient, with endocarditis after colonoscopy, also reported large daily intake of yoghurt. The isolate from blood was identified as L. rhamnosus but no further comparison with probiotic L. rhamnosus were made (Sipsas et al., 2002). A pathogenetic potential of Lactobacillus strains causing infective endocarditis was expression of high cell surface hydrophobocity which could convey adhesive properties (Harty et al., 1993). However, adhesive properties and platelet aggregation properties did not correlate to induction of systemic disease (Apostolou et al., 2001). In a mouse study, induction of cardioangitis by L. casei could be attributed to induction of inflammatory cytokines (Okitsu-Negishi et al., 1996). Safety and efficacy of perorally administered Lactobacillus sp were assessed in a mouse assay, and proposed as a screening assay (Bernaudeau et al., 2002). We have increased the sensitivity of a screening assay by using immunocompromised mice (Kruszewska et al., 2002). Another approach is to assess resistance to killing activity of macrophages and to nitrogen intermediates, two important features of the host innate defense (Asahara et al., 2003). Translocation of bacteria from the intestine, via mesenteric lymph nodes to the portal vein is a prerequisite for systemic spread of intestinal microorganisms. Whereas some probiotic
strains have been suggested to inhibit translocation, some are themselves translocated which causes concern regarding safety (Ishibashi and Yamazaki, 2001).

Probiotic strains should carry few if any mechanisms for antibiotic resistance, and preferably no plasmids with antibiotic resistance. Several of the available probiotic Bacillus products expressed high levels of antibiotic resistance (Hoa et al., 2000).

There are few case reports of invasive disease caused by Bifidobacterium, like one with B. longum in a previously healthy 19 year old man (Ha et al., 1999). There are multiple reports of septicaemia caused by Pediococcus sp, most of them, however, by P. acidilacti which is not used as a probiotic (Barros et al., 2001).

Generally, probiotic strains carry a very low risk of causing infection. Many probiotic products have been used traditionally over generations, and proven to be safe. Since different characteristics of strains listed above are strain specific, reports of systemic infections caused by various species should not make us exclude these species as probiotics. Each strain should be evaluated in tests for safety, but so far, there is no standard test(s) recommended.

Designing the final probiotic product

Probiotic strains can be administered to the customer in lyophilized form in sealed bags, tablets or capsules, or in yoghurt, other dairy products or in fruit juices. The storage time for lyophilised products is significantly longer. For each final product, the number of live cells has to be declared and the storage time at different temperatures clearly stated. Today, this is the case for but few products. Since probiotic microbes have different beneficial properties an optimal product may need the combination of several strains (Timmerman et al., 2004).

It is then essential to show that the strains do not inhibit each other in in vivo conditions. With modern technology there are possibilities to target preparations for delivery at a specific site – stomach, small intestine, large intestine and other organs as elegantly shown for E. coli Nissle 1917 (Westendorf et al., 2005). This strain colonizes the intestinal mucosa and can be used as a carrier for targeted delivery of recombinant proteins and antigens to the intestinal mucosa.

Available data from traditional medicine and clinical use clearly state that probiotics have a great potential, particularly today with the increasing threat of antibiotic over-use and prevalence of antibiotic resistant microorganisms. Molecular biological techniques will help us elucidate effects on the intestinal microflora, translocation, in vivo genetic transfer of markers for immune mediators as well as on safety issues (Temmermann et al., 2004; Vaughan et al., 1999). However, randomized, double-blind, placebo-controlled case-control studies are needed.

Acknowledgments

The authors’ own studies were supported by the Science Research Council of Sweden (16x-04723) and by Arla Foods.

References

pylori therapy-related side effects: A parallel group, triple blind, placebo-controlled study. Am. J. Gastroenterol. 97, 2744–2749.

