Gas Plasma Sterilization in Microbiology
Theory, Applications, Pitfalls and New Perspectives

Edited by
Hideharu Shintani
Faculty of Science and Engineering
Chuo University
Tokyo
Japan

and

Akikazu Sakudo
Laboratory of Biometabolic Chemistry
School of Health Sciences
University of Ryukyus
Okinawa
Japan
Contributors v
Preface vii
Acknowledgements viii

1 Introduction 1
Hideharu Shintani

2 Theoretical Background and Mode of Action of Gas Plasma Sterilization 5
Hideharu Shintani

3 Concomitant Achievement of a Sterility Assurance Level of 10^{-6} with Material and Functional Compatibility by Gas Plasma Sterilization 13
Hideharu Shintani

Hideharu Shintani, Naohiro Shimizu, Yuichiro Imanishi, Akikazu Sakudo, Takuya Uyama and Eiki Hotta

5 Current Progress in the Inactivation of Endotoxin and Lipid A by Exposure to Nitrogen Gas Plasma 41
Hideharu Shintani

6 Current Progress in Advanced Research into Tetrodotoxin Inactivation by Gas Plasmas 51
Toshihiro Takamatsu, Hidekazu Miyahara, Takeshi Azuma and Akitoshi Okino

7 Current Progress in Advanced Research into Fungal and Mycotoxin Inactivation by Cold Plasma Sterilization 59
Pervin Başaran Akocak
Contents

8 **Current Progress in the Sterilization of Spores and Vegetative Cells by Exposure to Gas Plasma: Sterilization, Disinfection and Antimicrobial Activity**
Hideharu Shintani
75

9 **Current Progress in Advanced Research into the Inactivation of Fungi and Yeasts by Gas Plasma**
Gyungsoon Park
91

10 **Current Progress in Advanced Research into the Inactivation of Viruses by Gas Plasma: Influenza Virus Inactivation by Nitrogen Gas Plasma**
Akikazu Sakudo
103

11 **Current Technology and Applications of Gas Plasma for Disinfection of Agricultural Products: Disinfection of Fungal Spores on *Citrus unshiu* by Atmospheric Pressure Dielectric Barrier Discharge**
Yoshihito Yagyu and Akikazu Sakudo
111

12 **Current Progress in Seed Disinfection by Gas Plasma: Disinfection of Seed-borne Fungi and Bacteria by Plasma with Alternating Current High-voltage Discharge**
Terumi Nishioka, Tomoko Mishima, Yoichi Toyokawa, Tatsuya Misawa and Akikazu Sakudo
121

13 **Validation of Gas Plasma Sterilization (Importance of ISO documents, ISO TC 198 and 194)**
Hideharu Shintani
131

14 **Misinterpretation of Microbiological Data on Gas Plasma Sterilization: Avoiding the Pitfalls**
Hideharu Shintani
141

15 **Future Perspectives and Trends in Gas Plasma Sterilization**
Hideharu Shintani
147

Index
151
Gas plasma is the fourth state of matter, alongside solid, liquid and gas. There are many naturally occurring events and man-made products related to gas plasma including aurora and thunderstorms, and high-intensity discharge (HID) headlamp bulbs, oxonizers, semiconductors and solar battery panels. As a result, gas plasma technology is increasingly important in our life.

Among the various technologies, particular attention should be paid to the use of gas plasma in sterilization and disinfection. Gas plasma treatment has helped to minimize the contamination of medical instruments with infectious pathogens and toxins and, thus, the prevention of hospital-acquired infection.

The purpose of this book is to bring together information on the current status and future prospects of the state-of-art physical technique of gas plasma sterilization. The chapters cover basic information on this method of sterilization, applications of gas plasma technology to the inactivation of toxins and pathogens, possible mechanisms of gas plasma sterilization, and verification and validation of the sterilization efficiency of gas plasma, as well as discussing the challenges, limitations, and advantages of gas plasma sterilization, as well as future research perspectives.

This book will provide a standard reference and indispensable roadmap of gas plasma sterilization for students, engineers, and laboratory scientists. I hope that readers will enjoy this book, obtain useful information for their own research, and be inspired by new ideas for future research on gas plasma sterilization.

Akikazu Sakudo
I sincerely thank my wife, Miharu Shintani, who supported me during the preparation of this book.

Hideharu Shintani

I am pleased to have the honour of compiling this book together with Dr Shintani and to have been given the opportunity to work with such eminent scientists as the chapter contributors, whose combined effort have made this book possible. In addition, we would like to acknowledge the grant-in-aids, especially grant-in-aid for science and technology research promotion programme for agriculture, forestry, fisheries and food industry, which supports the work published in this book. We also thank the publishers for granting permission to use previously published figures that are included in this book. Finally, we wish to thank Annette Griffin and the other editorial staff at Caister Academic Press for their professionalism and dedication.

Akikazu Sakudo