The polymerase chain reaction (PCR) is a fundamental tool in scientific research and clinical testing. Real-time PCR, combining both amplification and detection in one instrument, is a rapid and accurate method for nucleic acid detection and quantification. Although PCR is a very powerful technique, the results achieved are valid only if the appropriate controls have been employed. In addition, proper optimization of PCR conditions is required for the generation of specific, repeatable, reproducible and sensitive data.

This book discusses the strategies for preparing effective controls and standards for PCR, when they should be employed and how to interpret the information they provide. It highlights the significance of optimization for efficiency, precision and sensitivity of PCR methodology and provides essential guidance on how to troubleshoot inefficient reactions. Experts in PCR describe design and optimization techniques, discuss the use of appropriate controls, explain the significance of standard curves and explore the principles and strategies required for effective troubleshooting. Authors highlight the importance of sample preparation and quality, primer design, controlling inhibitors, avoiding amplicon and environmental contamination, optimizing reagent quality and concentration, and modifying the thermal cycling protocol for optimal sensitivity and specificity. In addition, specific chapters discuss the history of PCR, the choice of instrumentation, the applications of PCR in metagenomics, high resolution melting analysis, the MIQE guidelines, and PCR at the microliter scale.

The strategies, tips and advice contained in this concise volume enable the scientist to optimize and effectively troubleshoot a wide range of techniques including PCR, reverse transcriptase PCR, real-time PCR and quantitative PCR. An essential book for anyone using PCR technology.

Chapter 1. Magic in Solution: An Introduction and Brief History of PCR. Carl T. Wittwer and Jared S. Farrar
Chapter 2. Difficult Templates and Inhibitors of PCR. Jack M. Gallup
Chapter 3. Significance of Controls and Standard Curves in PCR. Ian Kavanagh, Gerwyn Jones and Saima Naveed Nayab
Chapter 4. Obtaining Maximum PCR Sensitivity and Specificity. Cameron N. Gundry and Matthew D. Poulson
Chapter 5. RT-PCR Optimization Strategies. Martina Reiter and Michael W. Pfaffl
Chapter 7. qPCR Data Analysis: Unlocking the Secret to Successful Results. Jan Hellemans and Jo Vandesompel
Chapter 8. The MIQE Guidelines Uncloaked. Gregory L. Shipley
Chapter 9. PCR Applications for Epigenetics Research. Gavin Meredith, Miro Dudas, Mark Landers, Vasiliki Anest, Jonathan Wang, Caifu Chen, Peter Jozsi and Christopher Adams
Chapter 11. Microfluidic Emulsion PCR. N. Reginald Beer and John H. Leamon

Order from:
MALDI-TOF Mass Spectrometry in Microbiology
Edited by: Markus Kostrzewa and Sören Schubert (Published: 2016)

Aspergillus and Penicillium in the Post-genomic Era
Edited by: Ronald P. de Vries, Isabelle Benoit Gelber and Mikael Rørdam Andersen (Published: 2016)

The Bacteriocins: Current Knowledge and Future Prospects
Edited by: Robert L. Dorit, Sandra M. Roy and Margaret A. Riley (Published: 2016)

Omics in Plant Disease Resistance
Edited by: Vijai Bhadauria (Published: 2016)

Acidophiles: Life in Extremely Acidic Environments
Edited by: Raquel Quatrini and D. Barrie Johnson (Published: 2016)

Climate Change and Microbial Ecology: Current Research and Future Trends
Edited by: Jürgen Marxsen (Published: 2016)

Biofilms in Bioremediation: Current Research and Emerging Technologies
Edited by: Gavin Lear (Published: 2016)

Microalgae: Current Research and Applications
Edited by: Maria-Nefeli Tsaloglou (Published: 2016)

Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
Edited by: Hideharu Shintani and Akikazu Sakudo (Published: 2016)

Virus Evolution: Current Research and Future Directions
Edited by: Scott C. Weaver, Mark Denison, Marilyn Roossinck and Marco Vignuzzi (Published: 2016)

Arboviruses: Molecular Biology, Evolution and Control
Edited by: Nikos Vasilakis and Duane J. Gubler (Published: 2016)

Shigella: Molecular and Cellular Biology
Edited by: William D. Picking and Wendy L. Picking (Published: 2016)

Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
Edited by: Anna M. Romani, Helena Guasch and M. Dolors Balaguer (Published: 2016)

Alphaviruses: Current Biology
Edited by: Suresh Mahalingam, Lara Herrero and Belinda Herring (Published: 2016)

Thermophilic Microorganisms
Edited by: Fu-Li Li (Published: 2015)

Flow Cytometry in Microbiology: Technology and Applications
Edited by: Martin G. Wilkinson (Published: 2015)

"an impressive group of experts" (ProtoView)

Probiotics and Prebiotics: Current Research and Future Trends
Edited by: Koen Venema and Ana Paula do Carmo (Published: 2015)

Epigenetics: Current Research and Emerging Trends
Edited by: Brian P. Chadwick (Published: 2015)

"this is one text you don’t want to miss" (Epigenie); "up-to-date information" (ChemMedChem)

Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications
Edited by: Andreas Burkovski (Published: 2015)

"Without question a valuable book" (BIOSpektrum)

Advanced Vaccine Research Methods for the Decade of Vaccines
Edited by: Fabio Bagnoli and Rino Rappuoli (Published: 2015)

Full details at www.caister.com