Lab-on-a-Chip Technology (Vol. 1)
Fabrication and Microfluidics

Edited by: Keith E. Herold and Avraham Rasooly
Fischell Department of Bioengineering, University of Maryland, USA, FDA Center for Devices and Radiological Health, Silver Spring, USA and the National Cancer Institute, Bethesda, USA

Published: August 2009. Pages: xiv + 410
Published by: Caister Academic Press www.caister.com

Lab-on-a-chip (LOC) devices integrate and scale down laboratory functions and processes to a miniaturized chip format. Many LOC devices are used in a wide array of biomedical and other analytical applications including rapid pathogen detection, clinical diagnosis, forensic science, electrophoresis, flow cytometry, blood chemistry analysis, protein and DNA analysis. LOC devices can be fabricated from many types of material including various polymers, glass, or silicon, or combinations of these materials. A broad variety of fabrication technologies are used for LOC device fabrication. LOC systems have several common features including microfluidics and sensing capabilities. Microfluidics deals with fluid flow in tiny channels using flow control devices (e.g., channels, pumps, mixers and valves). Sensing capabilities, usually optical or electrochemical sensors, can also be integrated into the chip.

This invaluable book describes the latest methods and novel technologies being developed for the fabrication of LOC devices and new approaches for fluid control and manipulation. Expert authors from around the world describe and discuss the newest technologies for the prototyping of devices, including replication and direct machining methods of fabrication. Part I of the book covers all aspects of fabrication including laser micromachining, silicon and glass micromachining, PMMA and COC microfluidic substrates, and xurography (LOC prototyping with a cutting plotter). Part II focuses on fluid control and manipulation for LOC systems. As well as providing examples of the use of pumps in microfluidics, topics covered include electrokinetic pumping (electroosmosis), electrochemical pumping and electrowetting, and the fabrication of a microchip for rapid polymerase chain reaction (PCR).

This comprehensive volume presents the current technologies in the field and includes theoretical and technical information to enable both the understanding of the technology and the reproduction of experiments. The book aims to help the reader to understand current LOC technologies, to perform similar experiments, to design new LOC systems and to develop new methodologies and applications. An essential book for biologists and clinicians using LOC technology and developing applications and also for engineering, chemical and physical science researchers developing analytical technologies. The book will also be useful as a teaching tool for bioengineering, biomedical engineering and biology.

Chapter 1. Introduction to Microfluidics. Keith Herold and Avraham Rasooly
Chapter 2. Fabricating PDMS Microfluidic Channels Using a Vinyl Sign Plotter. Michael Armani, Roland Probst and Benjamin Shapiro
Chapter 3. Functionalized Glass Coating for PDMS Microfluidic Devices. Adam R. Abate, Daeyeon Lee, Christian Holtze, Amber Krummel, Thao Do and David A. Weitz
Chapter 4. Fabrication of Lab-on-a-Chip Devices Using Microscale Plasma Activated Templating (μPLAT). Robert Carlson, Shih-hui Chao and John Koschwanetz
Chapter 5. Bonding Techniques for Thermoplastic Microfluidics. Chia-Wen Tsao and Don L. DeVo
Chapter 6. Xurography: Microfluidic Prototyping with a Cutting Plotter. Daniel A. Bartholomeusz, Ronald W. Boutté and Bruce K. Gale
Chapter 7. Silicon and Glass Micromachining. Edwin T. Carlen, Johan Borner, Jan van Nieuwkaasteele and Albert van den Berg
Chapter 9. Microtechnology to Fabricate Lab-on-a-Chip for Biology Applications. Sang-Hoon Lee
Chapter 10. Cyclic Olefin Copolymer (COC) Polymer Molding for LOC. Dong Sung Kim and Kwang W. Oh
Chapter 11. Laminated Object Manufacturing (LOM) Technology Based Multi-Channel Lab-on-a-Chip for Enzymatic and Chemical Analysis. Steven Sun, Nikolay Sergeev, Jesse Francis, Yordan Kostov, Minghui Yang, Hugh A. Bruck, Keith E. Herold and Avraham Rasooly
Chapter 12. Laser Micromachining. Emanuel Waddell
Chapter 14. Simple Recipe for Electroosmotic Mixing in Microchannels. Nadine Aubry
Chapter 16. Introduction to Electrokinetic Transport in Microfluidic Systems. David Erickson and Mekala Krishnan
Chapter 17. Frequency and Polarity Effects of Droplet-based LOC Driven by Electrowetting. Shih-Kang Fan
Chapter 18. Linear Dilution Microfluidic Devices. Adrian T. O’Neill and Glenn M. Walker
Chapter 20. An Active Micromixer Based on Non-equilibrium Electrokinetics for Lab-on-a-Chip Systems. Daejoong Kim
Chapter 21. Surface-Machined Parylene Microfluidics. Jason Shih, Terry D. Lee and Yu-Chong Tai
Chapter 22. Macro-to-Micro Fluidic Interfacing. Ronalee Lo and Ellis Meng
Chapter 23. Circuclar Ferrofluid-Driven PCR Microchips. Yi Sun, Yien Chian Kwok and Nam Trung Nguyen

Order from:
MALDI-TOF Mass Spectrometry in Microbiology
Edited by: Markus Kostrzewa and Sören Schubert (Published: 2016)

Aspergillus and Penicillium in the Post-genomic Era
Edited by: Ronald P. de Vries, Isabelle Benoit Gelber and Mikael Rørdam Andersen (Published: 2016)

The Bacteriocins: Current Knowledge and Future Prospects
Edited by: Robert L. Dorit, Sandra M. Roy and Margaret A. Riley (Published: 2016)

Omics in Plant Disease Resistance
Edited by: Vijai Bhadauria (Published: 2016)

Acidophiles: Life in Extremely Acidic Environments
Edited by: Raquel Quatrini and D. Barrie Johnson (Published: 2016)

Climate Change and Microbial Ecology: Current Research and Future Trends
Edited by: Jürgen Marxsen (Published: 2016)

Biofilms in Bioremediation: Current Research and Emerging Technologies
Edited by: Gavin Lear (Published: 2016)

Microalgae: Current Research and Applications
Edited by: Maria-Nefeli Tsaloglou (Published: 2016)

Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
Edited by: Hideharu Shintani and Akikazu Sakudo (Published: 2016)

Virus Evolution: Current Research and Future Directions
Edited by: Scott C. Weaver, Mark Denison, Marilyn Roossinck and Marco Vignuzzi (Published: 2016)

Arboviruses: Molecular Biology, Evolution and Control
Edited by: Nikos Vasilakis and Duane J. Gubler (Published: 2016)

Shigella: Molecular and Cellular Biology
Edited by: William D. Picking and Wendy L. Picking (Published: 2016)

Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
Edited by: Anna M. Romani, Helena Guasch and M. Dolors Balaguer (Published: 2016)

Alphaviruses: Current Biology
Edited by: Suresh Mahalingam, Lara Herrero and Belinda Herring (Published: 2016)

Thermophilic Microorganisms
Edited by: Fu-Li Li (Published: 2015)

Flow Cytometry in Microbiology: Technology and Applications
Edited by: Martin G. Wilkinson (Published: 2015)
“an impressive group of experts” (ProtoView)

Probiotics and Prebiotics: Current Research and Future Trends
Edited by: Koen Venema and Ana Paula do Carmo (Published: 2015)

Epigenetics: Current Research and Emerging Trends
Edited by: Brian P. Chadwick (Published: 2015)
"this is one text you don't want to miss" (Epigenet); "up-to-date information" (ChemMedChem)

Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications
Edited by: Andreas Burkovski (Published: 2015)
“Without question a valuable book” (BIOSpektrum)

Advanced Vaccine Research Methods for the Decade of Vaccines
Edited by: Fabio Bagnoli and Rino Rappuoli (Published: 2015)