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Abstract

Toxicogenomics is a rapidly developing discipline that
promises to aid scientists in understanding the
molecular and cellular effects of chemicals in
biological systems. This field encompasses global
assessment of biological effects using technologies
such as DNA microarrays or high throughput NMR and
protein expression analysis. This review provides an
overview of advancing multiple approaches (genomic,
proteomic, metabonomic) that may extend our
understanding of toxicology and highlights the
importance of coupling such approaches with classical
toxicity studies.

Background and Definition of Toxicogenomics

The field of toxicology is defined as the study of stressors
and their adverse effects. One sub-discipline deals with
hazard identification, mechanistic toxicology, and risk
assessment. Increased understanding of the mechanism
of action of chemicals being assayed will improve the
efficiency of these tasks. However, the derivation of
mechanistic knowledge traditionally evolves from studying
a few genes at a time in order to implicate their function in
mediation of toxicant effects. Undoubtedly, this process
has to be accelerated to monitor and discern the effects of
the thousands of new compounds developed by the
chemical and pharmaceutical industries. There is a need
for a screening method that can offer some insight into the
potential adverse outcome(s) of new drugs allowing the
intelligent advancement of compounds into late stages of
safety evaluation.

The rapid development and evolution of genomic-
(DeRisi, et al., 1996; Duggan, et al., 1999), proteomic-
(Lueking, et al., 1999; Page, et al., 1999; Rubin and
Merchant, 2000; Steiner and Anderson, 2000; Weinberger,
et al., 2000; Huang, 2001), and metabonomic- (Foxall, et
al., 1993; Corcoran, et al., 1997; De Beer, et al., 1998)
based technologies has accelerated the application of gene
expression for understanding chemical and other
environmental stressors’ effects on biological systems.
These technological advances have led to the development
of the field of “toxicogenomics”, which proposes to apply
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global mRNA, protein and metabolite analysis related-
technologies to study the effects of hazards on organisms
(Afshari, et al., 1999; Farr, 1999; Henry, 1999; Nuwaysir,
etal., 1999; Rockett and Dix, 1999; Hamadeh and Afshari,
2000; Pennie, et al., 2000; Rockett and Dix, 2000; Hooker,
2001; lannaccone, 2001; Olden, 2001; Smith, 2001;
Tennant, 2001; Hamadeh et al., 2001; Hamadeh et al,,
2002d). These collective approaches will allow the
development of a knowledge base of compound effects
that will aid in improving the efficiency of safety and risk
assessment of drugs and chemicals by facilitating better
understanding of the mechanisms by which chemical- or
stressor-induced injury occurs.

Technologies in Toxicogenomics
Gene Expression Profiling

Gene expression changes associated with signal pathway
activation can provide compound-specific information on
the pharmacological or toxicological effects of a chemical.
A standard method used to study changes in gene
expression is the Northern blot (Sambrook et al.,1989). An
advantage of this traditional molecular technique is that it
definitively shows the expression level of all transcripts
(including splice variants) for a particular gene. This
method, however, is labor intensive and is practical for
examining expression changes for a limited number of
genes. Alternate technologies, including DNA microarrays,
can measure the expression of tens of thousands of genes
in an equivalent amount of time (DeRisi, et al., 1996;
Duggan, et al., 1999; Hamadeh and Afshari, 2000;
Hamadeh et al., 2001). DNA microarrays provide a
revolutionary platform to compare genome-wide gene
expression patterns in dose and time contexts. There are
two basic types of microarrays used in gene expression
analyses: oligonucleotide-based arrays (Lockhart, et al.,
1996) and cDNA arrays (Schena, et al., 1995). Both yield
comparable results, though the methodology differs.
Oligonucleotide arrays are made using specific chemical
synthesis steps by a series of photolithographic masks,
light, or other methods to generate the specific sequence
order in the synthesis of the oligonucleotide. The result of
these processes is the generation of high-density arrays
of short oligonucleotide (~ 20-80 bases) probes that are
synthesized in predefined positions. cDNA microarrays
differ in that DNA sequences (0.5-2 kb in length) that
correspond to unique expressed gene sequences, are
usually spotted onto the surface of treated glass slides
using high speed robotic printers that allow the user to
configure the placement of cDNAs on a glass substrate or
chip. Spotted cDNAs can represent either sequenced
genes of known function, or collections of partially
sequenced cDNA derived from expressed sequence tags
(ESTs) corresponding to messenger RNAs of genes of
known or unknown function.

Any biological sample from which high quality RNA
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can be isolated may be used for microarray analysis to
determine differential gene expression levels. For
toxicology studies, there are a number of comparisons that
might be considered. For example, one can compare tissue
extracted from toxicant treated organism versus that of
vehicle exposed animals. In addition, other scenarios may
include the analysis of healthy versus diseased tissue or
susceptible versus resistant tissue. For spotted cDNA on
glass platforms, differential gene expression
measurements are achieved by a competitive,
simultaneous hybridization using a two-color fluorescence
labeling approach (Schena, et al., 1995; DeRisi, et al.,
1996). Multi-color based labels are currently being
optimized for adequate utility. Briefly, isolated RNA is
converted to fluorescently labeled “targets” by a reverse
transcriptase reaction using a modified nucleotide, typically
dUTP or dCTP conjugated with a chromophore. The two
RNAs being compared are labeled with different fluorescent
tags, traditionally either Cy3 or Cy5, so that each RNA has
a different energy emission wavelength or color when
excited by dual lasers. The fluorescently labeled targets
are mixed and hybridized on a microarray chip. The array
is scanned at two wavelengths using independent laser
excitation of the two fluors, for example, at 632 and 532
nm wavelengths for the red (Cy5) and green (Cy3) labels.
The intensity of fluorescence, emitted at each wavelength,
bound to each spot (gene) on the array corresponds to the
level of expression of the gene in one biological sample
relative to the other. The ratio of the intensities of the
toxicant-exposed versus control samples are calculated
and induction/repression of genes is inferred. Optimal
microarray measurements can detect differences as small
as 1.2 fold increase or decrease in gene expression.
Although the theoretical applications seem endless,
DNA microarrays have certain limitations. These
measurements are only semiquantitative due to a number
of factors, including cross hybridization and sequence-
specific binding anomalies. Another limitation is the number
of samples that can be processed efficiently at a time.
Processing and scanning samples may take several days
and generate large amounts of information that can take
considerable time to analyze. Automation is being applied
to microarray technology, and new equipment such as the
automated hybridization stations and auto-loaded scanners
will allow higher throughput analysis. To overcome these
limitations, one can combine microarrays with quantitative
polymerase chain reaction (QPCR) or Tagman and other
technologies in development (Kreuzer, et al., 1999;
Tokunaga, et al., 2000) to monitor the expression of
hundreds of genes in a high throughput fashion. This will
provide more quantitative output that may be crucial for
certain hazard identification processes. In the QPCR
(Walker, 2001) assay one set of primers is used to amplify
both the target gene cDNA and another neutral DNA
fragment, engineered to contain the desired gene template
primers, which competes with the target cDNA fragment
for the same primers and acts as an internal standard.
Serial dilutions of the neutral DNA fragment are added to
PCR amplification reactions containing constant amounts
of experimental cDNA samples. The neutral DNA fragment
utilizes the same primer as the target cDNA but yields a

PCR product of different size. QPCR can offer more
quantitative measurements than microarrays do because
measurements may be made in “real time” during the time
of the amplification and within a linear dynamic range. The
PCR reactions may be set up in 96 or 384-well plates to
provide a high throughput capability.

Expression Profiling of Toxicant Response

The validity and utility of analysis of gene expression
profiles for hazard identification depends on whether
different profiles correspond to different classes of
chemicals (Waring, et al.,, 2001; Waring, et al., 2001;
Hamadeh et al., 2002c) and whether defined profiles maybe
used to predict the identity/properties of unknown or blinded
samples derived from chemically treated biological models
(Hamadeh et al., 2002b). Gene expression profiling may
aid in prioritization of compounds to be screened in a high
throughput fashion and selection of chemicals for advanced
stages of toxicity testing in commercial settings.

In one effort to validate the toxicogenomic strategy,
Waring and coworkers (Waring, et al., 2001; Waring, et
al., 2001) conducted studies to address whether
compounds with similar toxic mechanisms produced similar
transcriptional alterations. This hypothesis was tested by
generating gene expression profiles for 15 known
hepatotoxicants in vitro (rat hepatocytes) and in vivo (livers
of male Sprague-Dawley rats) using microarray technology.
The results from the in vitro studies showed that
compounds with similar toxic mechanisms resulted in
similar but distinguishable gene expression profiles
(Waring, et al., 2001). The authors took advantage of the
variety of hepatocellular injuries (necrosis, DNA damage,
cirrhosis, hypertrophy, hepatic carcinoma) that were caused
by the chemicals and compared pathology endpoints to
the clustering output of the compounds’ gene expression
profiles. Their analyses showed a strong correlation
between the histopathology, clinical chemistry, and gene
expression profiles induced by the various agents (Waring,
et al., 2001). This suggests that DNA microarrays may be
a highly sensitive technique for classification of potential
chemical effects.

In another study, gene expression alterations in
Sprague Dawley rat livers were measured for known and
unknown compound treatments. This exercise revealed
that it is possible to use previously derived gene expression
profiles to characterize unknown compounds. In this study,
correct, positive predictions regarding the nature of 12 out
of 13 of the blinded samples were made (Hamadeh et al.,
2002c). Multiple statistical and computational approaches
such as hierarchical clustering (Eisen, et al., 1998), principal
component analysis (Johnson and Wichern, 1998), and
set pair-wise correlation (Johnson and Wichern, 1998;
Neter, 1996) were used to distinguish gene expression
profiles derived from rat livers treated with different class
chemicals and different durations of exposure (Hamadeh
et al., 2002b). Other computational methods such as linear
discriminant analysis (Solberg, 1978), single gene ANOVA
(Neter, 1996), and genetic algorithm/K-nearest neighbor
(Li et al., In Press) were useful in revealing single or groups
of highly discriminatory/informative genes whose



expression pattern could distinguish gene expression
patterns corresponding to different chemical treatments.
Blinded samples that exhibited high similarity (r>0.8) to
known samples, as determined by set pair-wise correlation,
were considered to tentatively share similar properties/
identities.

Mechanistic Inference from Toxicant Profiling

An extension of the use of toxicogenomics approaches is
the better understanding of the mechanisms of toxicity.
Bulera and coworkers (Bulera, et al., 2001) identified
several groups of genes reflective of mechanisms of toxicity
and related to a hepatotoxic outcome following treatment.
An example of the advantage of using a toxicogenomics
approach to understand mechanisms of chemical toxicity
was the observation that microcystin-LR and phenobarbital,
both of which are liver tumor promoters, induced a parallel
set of genes (Bulera, et al., 2001). Based on this information
the authors speculated that liver tumor promotion by both
compounds may occur by similar mechanisms. Such
observations derived through the application of microarrays
to toxicology will broaden our understanding of
mechanisms and our ability to identify compounds with
similar mechanisms of toxicity. The authors also confirmed
toxicity in the animals using conventional methods such
as histopathology, modulations in liver enzymes and
bilirubin levels and related these effects to gene expression
changes; however, it would have been advantageous to
utilize gene expression data to map relevant pathways
depicting mechanism(s) associated with the hepatotoxicity
of each compound (Hamadeh et al., 2001). Collectively, in
the future, researchers may attempt to build “transcriptome”
or “effector maps” that will help to visualize pathway
activation (Tennant, 2001).

Finally, Huang and coworkers (Huang, et al., 2001)
utilized cDNA microarrays to investigate gene expression
patterns of cisplatin-induced nephrotoxicity. In these
studies, rats were treated daily for 1 to 7 days with cisplatin
at a dose that resulted in necrosis of the renal proximal
tubular epithelial cells but no hepatotoxicity at day 7. Gene
expression patterns for transplatin, an inactive isomer, was
examined and revealed little gene expression change in
the kidney, consistent with the lack of nephrotoxicity of the
compound. Cisplatin-induced gene expression alterations
were reflective of the histopathological changes in the
kidney i.e. gene related to cellular remodeling, apoptosis,
and alteration of calcium homeostasis, among others which
the authors describe in a putative pathway of cisplatin
nephrotoxicity.

Protein Expression

Gene expression alone is not adequate to serve the
understanding of toxicant action and the disease outcomes
they induce. Abnormalities in protein production or function
are expected in response to toxicant exposure and the
onset of disease states. To understand the complete
mechanism of toxicant action, it is necessary to identify
the protein alterations associated with that exposure and
to understand how these changes affect protein/cellular
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function. Unlike classical genomic approaches that discover
genes related to toxicant induced disease, proteomics can
aid to characterize the disease process directly by capturing
proteins that participate in the disease. The lack of a direct
functional correlation between gene transcripts and their
corresponding proteins necessitates the use of proteomics
as a tool in toxicology.

Proteomics is the systematic analysis of expressed
proteins in tissues, by isolation, separation, identification
and functional characterization of proteins in a cell, tissue,
or organism (Lueking, et al., 1999; Page, et al., 1999;
Anderson, et al., 2000; Rubin and Merchant, 2000).
Proteomics, under the umbrella of toxicogenomics, involves
the comprehensive functional annotation and validation of
proteins in response to toxicant exposure. Understanding
the functional characteristics of proteins and their activity
requires a determination of cellular localization and
quantitation, tissue distribution, post-translational
modification state, domain modules and their effect on
protein interactions, protein complexes, ligand binding sites
and structural representation.

Currently, the most commonly used technologies for
proteomics research are 2-dimensional (2-D) gel
electrophoresis for protein separation followed by mass
spectrometry analysis of proteins of interest (Rasmussen,
et al., 1994; Shaw, et al., 1999; Carroll, et al., 2000;
Fountoulakis, et al., 2000; Kaji, et al., 2000; Watarai, et al.,
2000). Analytical protein characterization with
multidimensional liquid chromatography/mass
spectrometry improves the throughput and reliability of
peptide identity. Matrix-Assisted Laser Desorption Mass
Spectrometry (MALDI-MS) (Stults, 1995; Liang, et al.,
1996) has become a widely used method for determination
of biomolecules including peptides. Other technologies
such as Surface-Enhanced Laser Desorption/lonization
(SELDI) (Kuwata, et al., 1998; Li, et al., 2000; Merchant
and Weinberger, 2000; Rubin and Merchant, 2000) and
antibody arrays (Borrebaeck, et al., 2001; Haab, et al.,
2001; Paweletz, et al., 2001; Sreekumar, et al., 2001) are
also proving to be useful.

Cutler and coworkers conducted a study aimed at the
investigation of biochemical changes and identification of
biomarkers associated with acute renal injury following a
single dose of puromycin aminonucleoside to Sprague
Dawley rats using a combination of 2-D PAGE, reverse-
phase HPLC, mass spectrometry, amino acid analysis and
"H-NMR spectroscopy of urine as well as routine plasma
clinical chemistry and tissue histopathology (Cutler et al.,
1999). The 2-D PAGE of urine showed patterns of protein
change which were in accord with the limited profiles for
glomerular toxicity derived by use of other techniques and
allowed a more detailed understanding of the nature and
progression of the proteinuria associated with glomerular
toxicity. Interestingly, the 2-D PAGE approach taken by the
investigators, coupled with computational analysis of the
accompanying data gleaned on the collected samples, lead
to the detection of proteinuria at a considerably earlier time
point than has typically been reported following puromycin
aminonucleoside exposure, thus potentially defining
relatively early biomarkers which are superior to the
traditional gross urinary protein determination procedure
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(Cutler et al., 2001).

A serious limitation of proteomic analysis using 2-D
gel electrophoresis is the sensitivity of detection. Analysis
of low abundance proteins by 2-D electrophoresis is
challenging due to the presence of high abundant proteins
such as albumin, immunoglobulin heavy and light chains,
transferrin, and haptoglobin in the sera or actin, tubulin,
and other structural proteins when analyzing tissue.
Selective removal of these proteins from protein samples
via column-based immunoaffinity procedures allows for
more sample to be loaded on gels thereby facilitating
visualization of low abundant proteins that would otherwise
be obscured by more abundant ones (Kennedy, 2001).

Metabolite Analysis by NMR

Genomic and proteomic methods do not offer the
information needed to gain understanding of the resulting
output function in a living system. Neither approach
addresses the dynamic metabolic status of the whole
animal. The metabonomic approach is based on the
premise that toxicant-induced pathological or physiological
alterations result in changes in relative concentrations of
endogenous biochemicals. Metabolites in body fluids such
as urine, blood, or cerebrospinal fluid (CSF), are in dynamic
equilibrium with those inside cells and tissues, thus toxicant-
induced cellular abnormalities in tissues should be reflected
in altered biofluid compositions. An advantage of measuring
changes in body fluids is that these samples are much
more readily available from human subjects. High
resolution NMR spectroscopy ('H NMR) has been used in
a high-throughput fashion to simultaneously detect many
cellular biochemicals in urine, bile, blood plasma, milk,
saliva, sweat, gastric juice, seminal, amniotic, synovial and
cerebrospinal fluids (Holmes, et al., 1995; Robertson, et
al., 2000; Bundy, et al., 2001; Giriffin, et al., 2001; Nicholls,
etal., 2001; Waters, et al., 2001). In addition, intact tissue
and cellular suspensions have also been successfully
analyzed for metabolite content using magic-angle-spinning
"H NMR spectroscopy (Garrod, et al., 1999).

Metabolic Profiling of Toxicant Response

Robertson and coworkers evaluated the feasibility of a
toxicogenomic strategy by generating NMR spectra of urine
samples from male Wistar rats treated with different
hepatotoxicants (carbon tetrachloride, o-
naphthylisothiocyanate) or nephrotoxicants (2-
bromoethylamine, 4-aminophenol) (Robertson, et al.,
2000). Principal component analysis (PCA) of the urine
spectra was in agreement with clinical chemistry data
observed in blood samples taken from the chemically
exposed animals at various time points of chemical
exposure. Furthermore, PCA analysis suggested low dose
effects with two of the chemicals, which were not evident
by clinical chemistry or microscopic analyses. This
conclusion was demonstrated with the 150 mg/kg 2-
bromoethanolamine treated animals where only 5 of 8 of
the animals had creatinine or BUN levels, at day 1, that
were outside the normal range, while all animals exhibited
diuresis and principal component analysis was clearly

indicative of a consistent effect in all 8 animals.

In another seminal study, "H NMR spectroscopy was
used to characterize the time-dependency of urinary
metabolite perturbation in response to toxicant exposure.
Male Han Wistar or Sprague Dawley rats were treated with
either control vehicle or one of 13 model toxicants or drugs
that predominantly target liver or kidney. The resultant 'H
NMR spectra were analyzed using a probabilistic neural
network approach (Holmes, et al., 2001). A set of 583 of
the 1310 samples were designated as a training set for
the neural network, with the remaining 727 independent
cases employed as a test set for validation. Using these
techniques, the 13 classes of toxicity, together with the
variations associated with strain, were highly
distinguishable (>90%). An important aspect of this study
is the sensitivity of the methodology towards strain
differences that will be useful in investigating the genetic
variation of metabolic responses across multiple animal
models and may also prove useful in identifying susceptible
subpopulations.

Localization of Gene Expression

In order to help understand the role of genes or proteins in
toxic processes, specific cellular localization of these
targets is needed. Pathological alterations such as necrosis
and vasculitis are often localized to specific regions of an
organ or tissue. It is not known whether subtle gene or
protein expression alterations associated with these events
are detectable when the whole organ is used for preparation
of samples for further analyses. Laser capture
microdissection (LCM) (Emmert-Buck, et al., 1996; Bonner,
et al., 1997; Fend, et al., 2000; Murakami, et al., 2000) is
one method used to precisely select affected tissue thereby
enhancing the probability of observing gene or protein
expression changes associated with pathologically altered
regions. For example, profiling specific pathological lesions
that are considered to be precursors to cancer may help in
understanding how chronic chemical exposure leads to
tumor development.

However, for some tissues or laboratories, LCM may
not be technically feasible to discern gene expression in
cellular subtypes. A technical challenge may be that the
affected area or region is too small for enough RNA or
protein to be extracted for later analysis, or the extra
manipulation compromises the quality of harvested
samples. Therefore, when deriving samples from gross
organ or tissue samples for expression analysis, one often
has no measure of specific gene or protein expression
alterations attributable to the pathological change that was
diluted in the assayed organ or tissue. When an organ, or
part thereof, is harvested from a chemically exposed
animal, the response to the insult is almost always diluted
to a certain extent because not every area or cell is
responsive to treatment. Similarly, tumor samples or other
diseased tissues may contain other significant cell types
including stroma, lymphocytes, or endothelial cells. Dilution
effects are also involved when a heterogeneous expression
response occurs. For example, even in a homogeneous
cell population, each individual cell may have a very
different quantitative response for each gene expression



change. In order to address this problem, we evaluated
the sensitivity of cDNA microarrays in detecting diluted gene
expression alterations thus simulating relatively minor
changes in the context of total organ or tissue. We found
statistically significant differences in the expression of
numerous genes between two cell lines (HaCaT and MCF-
7) that continued to be detected even after a 20-fold dilution
of original changes (Hamadeh et al., 2002a) showing that
microarray analyses, when conducted in a manner to
optimize sensitivity and reduce noise, may be used to
determine gene expression changes occurring in only a
small percentage of cells sampled.

Finally, once important biomarkers are hypothesized
from genomics and proteomics technologies, candidate
target genes or proteins can then be monitored using more
high-throughput, cost-effective immunohistochemical
analyses in the form of tissue microarrays. Tissue
microarrays are microscope slides where thousands of
minute tissue samples from normal and diseased
organisms can be tiled in an array fashion. The tissue
microarrays can then be probed with the same fluorescent
antibody to monitor the expression, or lack of, certain
candidate markers for exposure or disease onset.

Database Requirements

Profiles corresponding to gene, protein, or metabolite
measurements should be housed in a relational database
that will facilitate the query of data depending on different
criteria. Technical requirements of the database are beyond
the scope of this discussion. From a biological perspective,
the ideal database will not only house the aforementioned
data, but will also hold additional toxicology information
describing various parameters of the stressor-subjected
biological systems. The parameters might include body and
organ weights, mortality, histopathological results, and
clinical chemistry and urinalysis measurements in animal
studies or cell viability, cell cycle analyses, cell density,
culture conditions and cell morphology reports in the case
of in vitro studies. Chemical purity, solubility, stability, and
volatility, also are important to archive. These additional
data are of importance when conducting pattern
recognition-oriented toxicogenomic studies because they
facilitate the understanding of similarities between genomic,
proteomic, or metabonomic profiles. These others will aid
in the interpretation of different profiles as suggested by
pattern recognition tools such as clustering algorithms or
principal components analysis (Hamadeh et al., 2002b;
2002c).

Toxicogenomic Components: Comparative/Predictive
and Functional

Comparative/Predictive Toxicogenomics

There are two main applications for a toxicogenomic
approach, comparative/predictive and functional.
Comparative genomic, proteomic, or metabonomic studies
measure the number and types of genes, protein, and
metabolites respectively that are present in normal and
toxicant-exposed cells, tissues, or biofluids. This approach
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is useful in defining the composition of the assayed samples
in terms of genetic, proteomic or metabolic variables. Thus
a biological sample derived from toxicant, or sham treated
animals can be regarded as an n-dimensional vector in
gene expression space with genes as variables along each
dimension. The same analogy can be applied for protein
expression or NMR analysis data thereby providing n-
dimensional fingerprints or profiles of the biological sample
under investigation. Thus, this aspect of toxicogenomics
deals with automated pattern recognition analysis aimed
at studying trends in data sets rather than probing the
individual genes for mechanistic information. The need for
pattern recognition tools is mandated by the volume and
complexity of data generated by genomic, proteomic and
metabonomic tools, and human intervention, in required
repetitive computation, is kept to a minimum. Automatic
toxicity classification methods are very desirable and
prediction models are well suited for this task.

The data profiles reflect the pharmacological or
toxicological effects, such as disease outcome, of the drug
or toxicant being utilized. The underlying goal is that a
sample from an animal exposed to an unknown chemical,
or displaying a certain pathological endpoint, can then be
compared to a database of profiles corresponding to
exposure conditions with well-characterized chemicals, or
to well defined pathological effects, in order to glean/predict
some properties regarding the studied sample. These
predictions, as we view them, fall into 2 major categories,
namely, classification of samples based on the class of
compound to which animals were exposed to, or
classification of samples based on the histopathology and
clinical chemistry that the treated animals displayed. Such
data will allow insight into the gene, protein, or metabolite
perturbations associated with pharmacologic effects of the
agent or toxic endpoints that ensue. If array data can be
“phenotypically anchored” to conventional indices of toxicity
(histopathology, clinical chemistry etc.) it will be possible
to search for evidence of injury prior to it’s clinical or
pathological manifestation. This approach could lead to
the discovery of potential early biomarkers of toxic injury.

“Supervised” predictive models (Zhou and Bennett,
1997; Jonic, et al., 1999; Tafeit and Reibnegger, 1999) have
been used for many years in the financial sectors for
evaluating future economic prospects of companies, and
in geological institutes for predicting adverse weather
outcomes using past or historical knowledge. They have
also been utilized to make predictions, using clinical and
radiographic information, regarding the diagnosis of active
pulmonary tuberculosis at the time of presentation at a
health-care facility that can be superior to physicians’
opinion (EI-Solh, et al., 1999). Predictive modeling will
undoubtedly revolutionize the field of toxicology by
recognizing patterns and trends in high-density data, and
forecasting gene-, protein-, or metabolite-environment
interactions relying on historical data from well studied
compounds and their corresponding profiles.

During the development of a predictive model, a
number of issues must be considered. These include the
representativeness of the variables to the entity being
modeled and the quality of databases consulted. The
National Center for Toxicogenomics (NCT), at the National
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Figure 1. Hypothetical 3-dimensional representation of samples, derived
from biological systems subjected to various exposure conditions, based
on the expression levels of gene, protein or metabolite levels. Computational
algorithms can form prediction zones (A) circumscribing sets of samples
derived from the same exposure conditions (in vivo, in vitro) or (B) zones
that encompass samples based on user defined endpoints associated with
these samples.

Institute of Environmental Health Sciences, is building a
database to store many variables (ex. dose, time, biological
system) and observations (ex. histopathology, body weight,
cell cycle data) that accompany the process of compound
evaluation studies (in vivo or in vitro) (Tennant, 2001).
Recording these parameters will greatly enhance the
process of parameter selection in subsequent efforts such
as predictive modeling or mechanism of action
interpretation. Predictive modeling can be fragmented into
a multistage process. The primary stage predictive
modeling includes hypothesis development, organization
and data collection. Secondary stage modeling includes
initial model development and testing. Tertiary stage
modeling includes continued application of the model,
ongoing refinement, and validation. Ideally, tertiary stage
modeling is a perpetual process whereby lessons learned
from previous model applications are incorporated into new
and future applications maintaining or increasing the
predictive robustness of the model.

First Stage of Comparative/Predictive Model: Data
Collection

The development of the primary stage of a predictive model
involves activities such as data collection strategies based
on proposed hypotheses. Data can be generated from in
vivo or in vitro experiments, depending on the suitability of
the biological system for studying effects of the targeted
compound. In the case of in vivo studies, hypotheses must
be generated regarding the compounds and endpoint
effects so that other measures, such as pathology, serum
markers, and carcinogenicity potential, are made and can
contribute to the ensuing model development. Data on
animal weight fluctuations, serum markers, pathological
alterations, and mortality rates corresponding to a chemical
exposure study should be documented and be the primary
source of such information for the constructed predictive
model. Pertinent data and analytically useful variables
gathered from other sources (ex. National Toxicology
Program) can be evaluated and incorporated into the
model. These data are important in developing a theoretical
framework in which to interpret the results of the predictive
model as well as to provide a guide for the data to be
collected.

Second Stage of Comparative/Predictive Model: Model
Development

The next step in the predictive model construction involves
a deductive phase that incorporates collected data into the
second stage of the model. The degree of correlation
between gene-, protein- or metabolite-related profiles of
different compounds or different toxicological/pathological
outcomes and the accompanying variables can be
measured and ranked. Computational and statistical
approaches would be applied to the data set to glean
relationships and dissimilarities among the variables
studied.

Neural networks, which have been used in models
predicting health status of HIV/AIDS patients (Giacomini,



etal.,, 1997; Kwak and Lee, 1997; loannidis, et al., 1998),
can be trained with a set of available profiles from previously
studied compounds or pathophysiological states. This
allows the automation of all the actions aimed at searching
the interrelationships and producing predictions regarding
unknown or new profiles. Every compound or effect is
characterized by various parameters describing its gene
expression pattern. Thus, a pattern may be represented
by a vector in space whose components could represent
various parameters that drive the decision of classification.
Dimensionality of this space is the number of vector
components or parameters involved and is based on the
analysis of multiple parameters that can correlate similar
expression profiles. As a simplified example, if we consider
each compound or adverse endpoint we are modeling to
have only three attributes, these three parameters can
represent vector coordinates in a 3-dimensional space.
Figure 1A shows how the treated animals, or cells, could
be spatially disposed, so that one can easily notice where
they are grouped, i.e. have similar parameters, for which
reason they most probably belong to the same group. Now
we proceed to defining which objects are situated in
particular nodes of the map. A multitude of available
algorithms satisfactorily cluster objects in 3- or n-
dimensional space based on computational approaches
(ex. PCA). We can then construct similarity zones around
various preset chemical (Figure 1A) or adverse endpoint
(Figure 1B) nodes. Such similarity zones would allow the
classification, with a defined level of confidence, of the
identity of unknown samples which neighbor samples in
the training data set. Thus possessing the map and
information about the analyzed compounds, we can reliably
judge the compounds with which we are less familiar.

The initial predictive model can be tested using the
data collected in the primary stage. Based upon the
outcome of this exercise, variables such as toxicant induced
lesion severity or organ weight fluctuations can be
introduced or removed from the process, or the weighting
of the variables can be adjusted until the model is able to
predict the highest percentage of chemicals possible. This
highlights the need for the consulted database to contain
enough parameters such as histopathological observations
or clinical chemistry data that accompany an experimental
design to facilitate this dynamic model optimization process.
Developed models should ideally allow the distinction of
gene expression profiles associated with chemical
exposure or pathological outcome depending on the
querying preferences of the user and the question being
asked. Once this has been achieved, tertiary stage
modeling may begin.

Third Stage of Comparative/Predictive Model: Utility

The use of genomic resources such as DNA microarrays
in safety evaluation will facilitate an emerging type of
experimentation termed “in silico” testing. For example, if
compound A was found to bear similarity to compound B,
and B had some aspects that were close to compound C,
then a relationship could be defined between compounds
A and C based on the their common link to B. In silico
experimentation can define this relationship through
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rigorous computation and mining of high-density gene
expression data. Developments in computer modeling and
expert systems for the prediction of biological activity and
toxicity will revolutionize the process of drug discovery and
development, by reducing the need to use animals for the
pre-screening of almost limitless numbers of potential drug
candidates.

It is not foreseeable that in the near future predictive
models will take the place of actual testing. However, in
the context of toxicogenomics, and with the increasing
number of chemicals to be tested, better prioritization can
be used to select the compounds for animal testing. The
most promising efficacious compounds with the least
probability of an adverse outcome would be selected for
further development.

Functional Toxicogenomics

Functional toxicogenomics is the study of genes’ and
proteins’ biological activities in the context of compound
effects on an organism. Gene and protein expression
profiles are analyzed for information that might provide
insight into specific mechanistic pathways. Mechanistic
inference is complex when the sequence of events
following toxicant exposure is viewed in both dose and time
space. Gene and protein expression patterns can indeed
be highly dependent on the toxicant concentrations
furnished at the assessed tissue and the time of exposure
to the agent. Expression patterns are only a snapshot in
time and dose space. Thus, a comprehensive
understanding of potential mechanisms of action of a
compound requires establishing patterns at various
combinations of time and dose. This will minimize the
misinterpretation of transient responses and allow the
discernment of delayed alterations that could be related to
adaptation events or may be representative of potential
biomarkers of pathophysiological endpoints.

Studies that target temporal expression of specific
genes and protein in response to toxicant exposure will
lead to a better understanding of the sequence of events
in complex regulatory networks. Algorithms, such as self-
organizing maps (Kohonen, 1999), can categorize genes
or proteins based on their expression pattern across a
continuum of time points. These analyses might suggest
relationships in the expression of some genes or proteins
depending on the concerted modulation of these variables.

An area of study which is of great interest to
toxicologists is the mechanistic understanding of toxicant
induced pathological endpoints. The premise that
perturbations in gene, protein, or metabolite levels are
reflective of adverse phenotypic effects of toxicants offers
an opportunity to phenotypically anchor these
perturbations. This is quite challenging due to the fact that
phenotypic effects often vary in the time-dose space of
the studied agent and may have regional variations in the
tissue. Furthermore, very few compounds exist that result
in only one phenotypic alteration at a given coordinate in
dose and time. Thus, objective assignment of measured
variables to multiple phenotypic events is not possible
under these circumstances. However, by studying multiple
structurally and pharmacologically unrelated agents that
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Figure 2. Schematic diagram outlining a strategy for the phenotypic anchorage of gene, protein, or metabolite alteration data. A hypothetical histopathological
analysis of livers derived from rats treated with either of compounds A, B, C, D, E, or F reveals an overlap among the effects manifested in one common
pathological endpoint. Commonality across animals revealed by cluster analysis of gene, protein, or metabolite levels would indicate a potential association

between the altered parameters and the shared histopathological endpoint.

share pathological endpoints of interest, one could tease
out gene, protein, or metabolite modulations that are in
common between the studied compounds (Figure 2). Laser
capture microdissection may also be used to capture
regional variations such as zonal patterns of hepatotoxicity.
This concept will allow the objective assignment of
measurable variables to phenotypic observations that will
supplement traditional pathology.

It is noteworthy to mention that, stand-alone, gene and
protein expression, or metabolite fluctuation analyses are
not expected to produce decisive inferences on the role of
genes or proteins in certain pathways or regulatory
networks. However, these tools constitute powerful means
to generate viable and testable hypotheses that can direct
future endeavors on proving or disproving the involvement
of genes, proteins, and metabolites in cellular processes.
Ultimately, hypothesized mechanistic inferences have to
be validated by the use of traditional molecular biology
techniques that include the use of specific enzyme
inhibitors, and the examination of the effects of over-
expression or deletion of specific genes or proteins on the
studied toxic endpoint or mechanism of compound action.

Future of Predictive Toxicology

From the rapid screening perspective, it is neither cost
effective, nor is it practical to survey the abundance of all
genes, proteins, or metabolites in a sample of interest. It
would be prudent to conduct cheaper, more high-

throughput measurements on variables that are of most
interest in the toxicological evaluation process. Thus, this
reductionist strategy mandates the selection of subsets of
genes, proteins or metabolites that will yield useful
information in regards to classification purposes such as
hazard identification or risk assessment. The challenge is
finding out what these minimal variables are and what data
we need to achieve this knowledge. Election of these
subsets by surveying existing toxicology literature is
inefficient because the role of most genes or proteins in
toxicological responses is poorly defined. Moreover, there
exists a multitude of undiscovered or unknown genes
(ESTSs) that might ultimately be key players in toxicological
processes.

We propose the use of genes, proteins, or metabolites,
that are found to be most discriminative between stressor
induced-specific profiles, for efficient screening purposes.
Discriminative potential of genes, proteins, or metabolites
is inferred when comparing differences in the levels of these
parameters across toxicant exposure scenarios. In the case
of samples derived from animals treated with one of few
chemicals, the levels of one gene, protein, or metabolite
might be sufficient to distinguish samples based on the
few classes of compounds used for the exposures.
However, multiple parameters are needed to separate
samples derived from exposures to a larger variety of
chemical classes. Finding these discriminatory parameters
requires the use of computational and mining algorithms
that extract this knowledge from a database of chemical
effects.



Linear discriminant analysis (LDA) (Johnson and
Wichern, 1998) and single gene ANOVA (Neter, 1996) can
be used to test single parameters (ex. genes) for their ability
to separate profiles corresponding to samples derived from
different exposure conditions (ex. chemical identity,
biological endpoint). Higher order analyses such as genetic
algorithm/K-nearest neighbor (GA/KNN) (Li et al., In Press)
are able to find a user defined number of parameters that
would, as a set, highlight the most difference between
biological samples based on the levels of genes, proteins,
or metabolites. Once the profile of a parameter, or a set of
parameters, is found to distinguish between samples in a
data set, it can be used to interrogate the identity of
unknown samples for screening purposes in a high-
throughput fashion. It is important to keep in mind that since
these discriminatory parameters are derived from historical
data, it is possible that their status might not hold once
significant volumes of new data is inputted in the database
that computations are run. It is prudent to view
discriminatory parameters (genes, protein, metabolites) as
dynamic entities that can be updated periodically
depending on the availability of new toxicant related profiles
used.

Summary

Toxicogenomic tools will inevitably improve the way data
is extracted from classical toxicology studies. Ultimately,
through the use of computational tools encompassed within
the comparative branch of toxicogenomics, environmental
hazard identification may be performed in a high-throughput
and efficient fashion. These achievements will be facilitated
through the development of gene, protein, or metabolite
markers whose levels can be monitored in samples derived
from exposed populations. Compound profiling will also
improve our understanding of toxicant induced adverse
endpoints in biological systems (pathological lesions, cell
cycle alterations) by providing information about the
underlying molecular pathways that are involved in
response to compound exposure. This knowledge will lead
to a more informed and precise classification of compounds
for their safety evaluation.
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