Duplex DNA Capture

Vadim V. Demidov¹, Nikolay O. Bukanov² and Maxim D. Frank-Kamenetski³

¹Boston University, 36 Cummington Street, Boston Massachusetts 02215, USA
²Genzyme Genetics, 1 Mountain Road, Framingham, MA 01701-9322, USA

Abstract

This article describes the sequence-specific isolation and purification of intact double-stranded DNA (dsDNA) by oligonucleotide/PNA-assisted affinity capture (OPAC). The OPAC assay is based on selective tagging of a DNA duplex by biotinylated oligodeoxyribonucleotide (ODN) through formation of a so-called PD-loop. The PD-loop is assembled with the aid of a pair of PNA "openers", which allow sequence-specific targeting with a Watson-Crick complementary ODN probe in the exposed region of the dsDNA. The protocol involves three steps. First, two cationic bis-PNAs locally pry the DNA duplex apart at a predetermined site. Then, the exposed DNA single strand is targeted by a complementary biotinylated ODN to selectively form a stable PD-loop complex. Finally, the capture of dsDNA is performed using streptavidin covered magnetic beads. The OPAC procedure has many advantages in the isolation of highly purified native DNA over other affinity capture and amplification techniques.

Introduction

Methods for purification of specific dsDNA molecules from heterogeneous DNA mixtures or directly from biological samples have contributed immensely to molecular biology, genomics and the emerging field of DNA diagnostics. In many cases PCR amplification addresses the issues of DNA isolation and analysis. However, point mutations are often introduced during PCR amplification and information about post-synthetic (epigenetic) modifications of DNA is lost. In addition, substances present in most PCR amplification techniques do not interfere with specialized DNA sites opened by a pair of openers are accessible for binding with the Watson-Crick complementary ODN probe. Figure 1a) can be assembled sequence specifically with the aid of PNAs (9, 12). Formation of the PD-loop is based on the ability of short homopyrimidine PNAs to displace one strand of dsDNA forming a PNA-DNA-PNA triplex with the other strand (13-17). This exceptionally stable structure, known as a P-loop, is formed most readily with the use of positively charged bis-PNA (16-22). When a pair of such PNA "openers" bind to closely located homopurine DNA tracts separated by any short sequence of nucleobases, the two adjacent P-loops merge and an extended open region emerges inside dsDNA. This region can serve as a target for Watson-Crick binding of an ODN that cannot by itself form stable complexes with linear dsDNA, even near the end of the duplex (23).

Affinity capture of the targeted dsDNA fragments is possible by employing ODN probes with biotin or other tags that allow convenient capture. Figure 1b shows a schematic of the steps in the OPAC method, in this case using streptavidin-coated iron microbeads for the capture of the dsDNA target fragment. The capture of the dsDNA occurs in a highly sequence-specific manner because only DNA sites opened by a pair of openers are accessible for binding with the Watson-Crick complementary ODN probe.

Protocol

Materials

Source of dsDNA molecules (mixture of dsDNA restriction fragments, plasmid cDNA library, etc.); a pair of short cationic bis-PNA "openers"; ODN probe/tag (typically about 15-nt-long) labeled with biotin, digoxigenin, etc.; affinity matrix (such as streptavidin- or antidigoxigenin-covered paramagnetic and agarose beads); separator (e.g., magnetic separator, microcentrifuge, chromatography column). The following buffer solutions are used: binding buffer (buffer A: 25 mM MES, pH 6.5), washing buffer (buffer B: PBS buffer, pH 7.5 containing 1 mg/ml BSA and 0.2 mg/ml tRNA), immobilization buffer (buffer C: TAE buffer, pH 8.0 with 500 mM NaCl), and elution buffer (buffer D: TE buffer, pH 7.5 with 50 or 1,000 mM NaCl). The last three buffers as well as the protocol below are applicable when a biotin-streptavidin capturing system and biomagnetic separation is employed (see Figure 1b). This protocol can be readily adapted to suit different experimental designs such as other ODN labeling groups and affinity matrixes. It is important in all instances to use siliconized micro-tubes to prevent the loss of sample DNA.

Step 1: PNA targeting and ODN binding

Incubate the DNA sample (typically 0.1-1 µg) with a pair of PNA “openers” in 10-20 µl of buffer A for about 10 h at 37°C. A PNA concentration of 0.1-1 µM is typically required depending on the binding affinity of the bis-PNAs. To avoid binding of unbound “openers” with the partially complementary ODN probe, remove excess PNA by gel filtration of the sample at room temperature through MicroSpin Sephadex G-50 column equilibrated with buffer A containing 200 mM NaCl. Then incubate the sample for 1 h at 37°C to dissociate PNA bound with DNA nonspecifically. This will prevent non-selective dsDNA capture via associated PNA-ODN complexes. Next, bind about 1 pmol of biotinylated ODN in buffer A containing about 500
Demidov et al.

nM NaCl for 1 h at 37°C. Remove free ODN from the sample by gel filtration in the same buffer at room temperature. A final volume about 30 µl is convenient. After that incubate the sample for 1 h at 37°C to dissociate ODN tags bound with dsDNA non-specifically.

Step 2: Magnetic Separation

Pre-Treatment of the Magnetic Beads

Following the manufacturer’s recommendation (24) resuspend the stock of magnetic beads, take 20 µl of homogeneous suspension and collect the beads using a magnetic separator. Aspirate the supernatant and then add 250 µl of buffer B. Resuspend beads gently again and after 20 min collect the beads with the separator. Repeat the washing step with buffer B and wash the beads twice in 250 µl of buffer C.

Magnetic Separation

Resuspend the beads in 20 µl of buffer C and add 30 µl of the DNA sample prepared during step 1. Incubate for 1-2 h at room temperature with occasional tipping to keep the beads suspended. Collect the beads using the magnetic separator, remove the supernatant, and wash magnetic beads at least two times with 250 µl of buffer C. Resuspend the beads in 150 µl of buffer C and transfer suspension into another microtube. Collect the beads, discard the supernatant and then add 50 µl of low- or high-salt buffer D. In low-salt buffer D, elution of dsDNA from the magnetic beads can be done by incubation of the sample with occasional gentle tipping for 20 min at about 45-50°C. The temperature of the elution will depend on the binding affinity of an ODN probe, which is mostly determined by salt concentration, ODN length and ODN base composition. Under these conditions for dsDNA elution, the PNA “openers” remain bound to dsDNA. Up to five rounds of OPAC selection can be carried out without the time-consuming re-targeting of DNA samples with the PNA “openers”. Only the ODN tag needs to be rebound to facilitate the subsequent round of OPAC enrichment. If a single round of OPAC is enough for dsDNA selection or when it is necessary to remove bound PNA from DNA for subsequent manipulation with captured materials, high-salt buffer D should be used at the end of the procedure. In this case, incubate the sample at 65°C for 20 min. Immediately thereafter collect the beads and transfer the supernatant containing the purified dsDNA fragment into the required buffer by gel filtration or ethanol precipitation to prepare for downstream applications.

Example

We have demonstrated the capability of the OPAC method by magnetic separation of a specific dsDNA fragment from a digest of the entire *S. cerevisiae* genome with the *Mse I* restriction enzyme (12). A unique 19-bp-long site we have used, 5'-AG GA G CTG A G A3', is located on yeast chromosome IX and consists of two homopurine targets for PNA “openers” (underlined) separated by 4-bp-long mixed purine-pyrimidine sequence. This site was targeted with the bis-PNA “openers”, H(Lys)2-T3T2J2-(eq1)3-C T2 T2 C T3-LysNH2 (ODN 1; common abbreviations are used (18)) and H(Lys)2-T3T2J2-(eq1)3-T3C2T2-LysNH2 (ODN 2). Affinity capture was performed with the use of a biotinylated 14-mer ODN probe; biotin-5'GA GCTG A G A3' (the 3'-end of the ODN may also be used for biotinylation (12)). Model experiment (Figure 2a), which was done with the 863-bp-long target fragment amplified by PCR from yeast genome, demonstrated an efficient selection of desired dsDNA with its virtually complete recovery. Shorter, 12-mer ODN tag did not allow us to capture the target fragment.

250 ng of yeast DNA (about 10⁶ genomic copies) was digested with the *Mse I* restriction enzyme and five rounds of the OPAC selection was performed. Note that the PNA “openers” were incubated with DNA only at the beginning of the first round as the low-salt buffer was used. The complexity of the original dsDNA pool was very high as the total number of different fragments was close to 40,000. To assess the dsDNA purity, after each round a sample of the collected supernatant was analyzed by PCR amplification using a special adapter ligated to both ends of all fragments of the original digest as a primer (see ref. 12 for details). This assay amplified all captured DNA fragments and hence could be used to track the progress of the OPAC enrichment from step by step by gel electrophoresis.

After three rounds of selection, the complexity of the DNA pool was dramatically reduced (Figure 2b) and the desired 903-bp-long (863-bp-long target DNA plus two 20-bp-long adapters) dsDNA fragment could easily be isolated by gel electrophoresis. Additional rounds resulted in the isolation of the virtually pure target fragment (Figure 2b lane 5). Restriction analysis and sequencing performed
C is the separation procedure, respectively. Lane M is a 100-bp DNA ladder; lane to one, two, three, four and five rounds of PD-loop formation/biomagnetic performed between the rounds. No intervening amplification of captured material was nonspecifically amplified for subsequent analysis by PCR (see ref. 12 for details). Note that PCR was only used as a detection method for following the enrichment. Just a few rounds of selection without any intermediate cloning or amplification procedures were sufficient to segregate the desired piece of DNA out of a very heterogeneous pool of dsDNA fragments. This is due to the remarkable sequence specificity of the OPAC assay. The target site was completely identical to the sequence from the S. cerevisiae Database and, therefore, was fully complementary to the PNA “openers” and the ODN tag used.

Discussion

The obtained results (ref. 12 and above) demonstrate that the OPAC technique is suitable for capturing specific fragments of duplex DNA from very complex mixtures of DNA. Just a few rounds of selection without any intermediate cloning or amplification procedures were sufficient to segregate the desired piece of DNA out of a very heterogeneous pool of dsDNA fragments. This is due to the remarkable sequence specificity of the OPAC assay. Note that single P-loops formed as a result of binding of separate PNA “openers” are too small to form stable complexes with an ODN. Therefore, only sites on dsDNA flanked by two specific “openers” are exposed and thus are accessible for hybridization to the complementary ODN probe. Most of DNA retains its duplex structure and is inaccessible for binding of an ODN with a mixed purine-pyrimidine composition. Thus, the requirement of simultaneous binding of two “openers” along with an ODN probe to target dsDNA provides the extremely high selectivity of the OPAC method. It is also important that the entire PD-loop required for OPAC consists of about 20 bp or more and hence is unique within the entire human genome.

We anticipate that sequence restrictions inherent to the OPAC procedure due to the required homopyrimidine nature of PNA “openers” to be rather insignificant. Our data demonstrate that binding sites for “openers” can be as short as heptamers and that they can be separated by virtually an arbitrary sequence of nucleobases up to 10-bp-long (12). Taking into account that probability of encountering any purine in DNA sequence is equal to 1/2 and that a pair of adjacent homopurine stretches can be found in either strand of DNA duplex, such sites are met, statistically, after each (1/2)^7 × (7/10)^5 ~ 800 bp. In fact, sifting the GenBank Database available for several prokaryotic and eukaryotic genomes, we have found one site of that kind per several hundred base pairs, on average. Thus, normally each gene will carry an OPAC target site, especially in case of eukaryotes.

The situation is totally different from the triplex affinity capture (TAC) method (4-9). To provide an efficient capture of the DNA duplex, TAC requires a homopurine-homopyrimidine target region to be at least 20 bp long. Such site occurs extremely rarely, statistically once every million base pairs. Therefore, TAC targets are normally not met in genes. The same is true for PNA-mediated affinity capture of long dsDNA stretches consisting of trinucleotide repeats (11).

The sequence limitations for the OPAC technique may be even less restrictive than indicated above. The ability of homothymine bis-PNA to target a complementary 5-bp-long sequence within dsDNA via strand invasion has been recently reported (25) and hence implies that the targets for the PNA “openers” can be as short as pentamers. If
they again can be separated by up to 10 bp, at least one site suitable for OPAC should be found every 50 bp on average. Also, we have found that PD-loops can be formed when two closely located homopurine tracts are in opposite DNA strands (unpublished data). If PD-loops of that kind will be stable enough to be used for OPAC selection, this will further soften the OPAC sequence restrictions.

Future studies are necessary to understand the origin of the nonspecific dsDNA co-capture we encountered in the model OPAC experiments (12), as this limits the efficiency of the OPAC method. Our data indicate that random co-capture of nonspecific DNA molecules together with the targeted fragment may be caused by DNA aggregation through the positively charged PNA “openers”. Therefore the optimal charge of PNA “openers” has to be determined to minimize nonspecific co-capture. Further investigations are also required to set the upper limits on the length of the OPAC isolated DNA fragments and on the complexity of the initial pool of DNA molecules which can be successfully enriched via the OPAC selection.

Acknowledgements

Support by the National Institutes of Health and PE Biosystems is appreciated.

Note

This article is a journal version of book chapter (26) reprinted by the publisher with the author’s permission.

References

Further Reading

Caister Academic Press is a leading academic publisher of advanced texts in microbiology, molecular biology and medical research. Full details of all our publications at caister.com

- MALDI-TOF Mass Spectrometry in Microbiology
 Edited by: M Kostrzewa, S Schubert (2016)
 www.caister.com/malditof

- Aspergillus and Penicillium in the Post-genomic Era
 Edited by: RP Vries, IB Gelber, MR Andersen (2016)
 www.caister.com/aspergillus2

- The Bacteriocins: Current Knowledge and Future Prospects
 Edited by: RL Dorfl, SM Roy, MA Riley (2016)
 www.caister.com/bacteriocins

- Omics in Plant Disease Resistance
 Edited by: V Bhadauria (2016)
 www.caister.com/opdr

- Acidophiles: Life in Extremely Acidic Environments
 Edited by: R Quatrini, DB Johnson (2016)
 www.caister.com/acidophiles

- Climate Change and Microbial Ecology: Current Research and Future Trends
 Edited by: J Marxsen (2016)
 www.caister.com/climate

- Biofilms in Bioremediation: Current Research and Emerging Technologies
 Edited by: G Lear (2016)
 www.caister.com/biorem

- Microalgae: Current Research and Applications
 Edited by: MN Tsioaloglu (2016)
 www.caister.com/microalgae

- Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
 Edited by: H Shintani, A Sakudo (2016)
 www.caister.com/gasplasma

- Virus Evolution: Current Research and Future Directions
 Edited by: SC Weaver, M Denison, M Roossinck, et al. (2016)
 www.caister.com/virusevol

- Arboviruses: Molecular Biology, Evolution and Control
 Edited by: N Vasiliakos, DJ Gubler (2016)
 www.caister.com/arbo

- Shigella: Molecular and Cellular Biology
 Edited by: WD Picking, WL Picking (2016)
 www.caister.com/shigella

- Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
 Edited by: AM Romani, H Guasch, MD Balaguer (2016)
 www.caister.com/aquaticbiofilms

- Alphaviruses: Current Biology
 Edited by: S Mahalingam, L Herrero, B Herring (2016)
 www.caister.com/alpha

- Thermophilic Microorganisms
 Edited by: F Li (2015)
 www.caister.com/thermophile

- Flow Cytometry in Microbiology: Technology and Applications
 Edited by: MG Wilkinson (2015)
 www.caister.com/flow

- Probiotics and Prebiotics: Current Research and Future Trends
 Edited by: K Venema, AP Carmo (2015)
 www.caister.com/probiotics

- Epigenetics: Current Research and Emerging Trends
 Edited by: BP Chadwick (2015)
 www.caister.com/epigenetics2015

- Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications
 Edited by: A Burkovski (2015)
 www.caister.com/cory2

- Advanced Vaccine Research Methods for the Decade of Vaccines
 Edited by: F Bagnoli, R Rappuoli (2015)
 www.caister.com/vaccines

- Antifungals: From Genomics to Resistance and the Development of Novel Agents
 Edited by: AT Coste, P Vandeputte (2015)
 www.caister.com/antifungals

- Bacteria-Plant Interactions: Advanced Research and Future Trends
 www.caister.com/bacteria-plant

- Aeromonas
 Edited by: J Graf (2015)
 www.caister.com/aeromonas

- Antibiotics: Current Innovations and Future Trends
 Edited by: S Sánchez, AL Demain (2015)
 www.caister.com/antibiotics

- Leishmania: Current Biology and Control
 Edited by: S Adak, R Datta (2015)
 www.caister.com/leish2

- Acanthamoeba: Biology and Pathogenesis (2nd edition)
 Author: NA Khan (2015)
 www.caister.com/acanthamoeba2

- Microarrays: Current Technology, Innovations and Applications
 Edited by: Z He (2014)
 www.caister.com/microarrays2

- Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications
 Edited by: D Marco (2014)
 www.caister.com/n2

Order from caister.com/order