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Diet, Escherichia coli O157:H7, and Cattle: 
A Review After 10 Years

Abstract
Escherichia coli are commensal bacteria that can account 
for up to 1% of the bacterial population of the gut.  Ruminant 
animals are reservoirs of the pathogenic bacteria E. coli 
strain O157:H7, and approximately 30% of feedlot cattle 
shed E. coli O157:H7.  Feedlot and high-producing dairy 
cattle are fed high grain rations in order to increase feed 
efficiency.  When cattle are fed high grain rations, some 
starch escapes ruminal microbial degradation and passes 
to the hindgut where it undergoes fermentation.  Ten years 
ago researchers demonstrated that populations of total E. 
coli were higher in grain-fed than in forage-fed cattle, and 
when cattle were abruptly switched from a high grain diet to 
an all hay diet, total E. coli populations declined 1000-fold 
within 5 days and reduced the ability of the surviving E. 
coli to survive an acid shock mimicking passage through 
the human gastric stomach.  This research provoked many 
questions about the effects of diet or E. coli O157:H7 
populations that have not been conclusively answered to 
date.  Subsequent research has shown that diet does affect 
E. coli O157:H7 populations, but the effects have varied in 
magnitude and impact.  Further studies have demonstrated 
that the effects of forage feeding on E. coli O157:H7 
populations may be due to concentrations of tannins and 
phenolic acids in forages.   Other ration components such 
as rapidly ruminally fermented grains (e.g., barley) increase 
the shedding of E. coli O157:H7, and in some situations, 
feeding distillers grains can increase fecal shedding of 
E. coli O157:H7 due to VFA concentrations.  Data from 
researchers across North America indicate that diet does 
impact STEC/EHEC populations in cattle prior to slaughter; 
however the economic, logistic and practical impacts of 
dietary changes must be examined and accounted for.

Introduction
Escherichia coli is a facultative anaerobic bacterium 
commonly found in the mammalian intestinal tract (Drasar 
and Barrow, 1985).  Escherichia coli lives a fecal-oral 
lifestyle and can comprise up to 1% of the gastrointestinal 
population of mammals and is used as an indicator of 
environmental fecal contamination of water supplies 
(Winfield and Groisman, 2003).  Most E. coli strains are 
commensal; however, some E. coli strains can be pathogenic 
to humans, and are harbored within food animals (Drasar, 
1974, Drasar and Barrow, 1985).  Some E. coli strains can 
cause hemorrhagic colitis in humans; but the best known 
enterohemorrhagic E. coli (EHEC) strain remains O157:H7 
(Scotland et al., 1990).  Each year, more than 60 people die 
and 73,000 people are made ill by Escherichia coli O157:H7 
in the U.S. (Mead et al., 1999), and EHEC infections are 
estimated to cost the economy more than $1 billion per year 
(USDA-ERS, 2001).  

Ground beef is the most frequently implicated source of E. 
coli O157:H7 outbreaks, and bovine-derived products are 
linked to approximately 75% of E. coli O157:H7 outbreaks 
(USDA-APHIS, 1997, Vugia et al., 2007).  Cattle are a major 
reservoir of E. coli O157:H7 and repeated hemorrhagic 
colitis outbreaks linked to consumption of ground beef, 
animal contact, manure amendation, or cattle manure-
contaminated runoff has firmly established the connection 
between cattle and E. coli O157:H7 epidemiologically, and 
in public perception (Jay et al., 2007, Keen et al., 2007, 
Steinmuller et al., 2006).  Repeated large-scale recalls 
of E. coli O157:H7 contaminated ground beef, and the 
well-publicized deaths of children who consumed foods 
contaminated by exposure to beef products or ruminants 
have further shaken the confidence of consumers in the 
wholesomeness and safety of beef (Gage, 2001).  In-
plant post-harvest sanitation efforts effectively reduce 
contamination of carcasses with E. coli O157:H7 (Arthur et 
al., 2007a, Bosilevac et al., 2006, Woerner et al., 2006).  
However, no matter the effectiveness of these strategies, 
they are not sufficient to ensure human food safety and 
health.  

Studies have shown than up to 30% of all cattle are 
asymptomatic carriers of E. coli O157:H7 (Callaway et 
al., 2006, Reinstein et al., 2007, Stanford et al., 2005).  
Manure from cattle production facilities can contain viable 
E. coli O157:H7 and be washed into the water supply and 
consumed directly in drinking water, or be used as irrigation 
water on crops, or transmitted by other animal vectors (Hill 
et al., 2006, LeJeune et al., 2001, Sargeant et al., 2003, 
Thurston-Enriquez et al., 2005).  Therefore, methods that 
reduce E. coli O157:H7 populations in food animals prior to 
entry to the food chain have great potential to reduce human 
illnesses (Callaway et al., 2004, Loneragan and Brashears, 
2005, Sargeant et al., 2007).  
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One method proposed to reduce EHEC in cattle is to 
abruptly change the diet from a high grain to a forage based 
ration.  This suggestion was based on research results 
first published in 1998 that demonstrated that an abrupt 
shift from grain to hay-based rations reduced generic E. 
coli populations significantly (Diez-Gonzalez et al., 1998).  
This study elicited a great deal of subsequent research 
that has yielded variable results (Hancock et al., 2000, 
Hovde et al., 1999, Keen et al., 1999).  Therefore, as the 10 
year anniversary of this hypothesis is reached, this review 
examines the current state of knowledge about the effects 
of dietary and other cattle management manipulations on E. 
coli and O157:H7 populations.

Enterohaemorrhagic E. coli and their reservoir, ruminant 
animals
The microbial population of the ruminant is diverse and 
microbes live throughout the gastrointestinal tract of 
mammals, and this includes the ubiquitous and adaptable 
E. coli (Drasar and Barrow, 1985, Yokoyama and Johnson, 
1988).  Escherichia coli are rarely cultured in high numbers 
from the rumen of cattle, typically less than 106 cells/ml 
out of a population of >1010 cells/ml (Laven et al., 2003, 
Min et al., 2007, Wolin, 1969).  Escherichia coli were not 
considered “important” ruminal bacteria (Rasmussen et al., 
1999, Wolin, 1969) because of the competitive nature of the 
rumen and the fact that high concentrations of volatile fatty 
acids (VFA) are bactericidal (Wallace et al., 1989, Wolin, 
1969).  In the lower intestinal tract, conditions are generally 
more favorable for E. coli, where they can be found at 
concentrations ranging from 102 to 107 cells/g feces at 
slaughter (Davidson and Taylor, 1978, Jordan and McEwen, 
1998).  In spite of the severity of illness in humans caused 
by EHEC, they are not predominant members of the E. coli 
population (Laven et al., 2003, Tkalcic et al., 2003, Zhao et 
al., 1998).  In addition to gastrointestinal populations, the 
oral cavities of cattle also can contain EHEC (Keen and 
Elder, 2002, Smith et al., 2005), likely due to the process 
of rumination.  However, it must be noted that the genotype 
of E. coli O157:H7 isolates from the oral cavity can differ 
significantly from fecal isolates (Keen and Elder, 2002).  
Researchers have shown that E. coli were associated with 
the digesta rather than with the intestinal wall (Laven et al., 
2003).  Other studies have demonstrated that the terminal 
end of the colon was the major site of E. coli O157:H7 
colonization (Grauke et al., 2002) and the lymphoid 
tissue located at the recto-anal junction (RAJ) has been 
demonstrated to be the primary site of colonization of cattle 
(Naylor et al., 2003).  Other researchers have subsequently 
verified that the RAJ is intimately involved with E. coli 
O157:H7 colonization (Davis, 2006, Greenquist et al., 2005, 
Lim et al., 2007, Rice et al., 2003) leading to the suggestion 
that RAJ colonization may be involved in the phenomenon of 
“super-shedders” (Cobbold, 2007, LeJeune and Kauffman, 
2006).  

The EHEC strain responsible for most human illnesses 
and that colonize cattle vary geographically and temporally 
(Cookson et al., 2007, Fagan et al., 1999, Wang et al., 2000).  
Studies have found cattle can be concomitantly colonized 
by up to 26 different serotypes of EHEC (Schurman et al., 
2000).  In the U.S. most illnesses and subsequent surveys 
and interest have focused on strain O157:H7, although 

other EHEC are found in the U.S. in humans and cattle 
(Hussein et al., 2003b, Midgley et al., 1999).  Therefore it is 
emphasized that although the U.S. focus remains on strain 
O157:H7, that we not forget the other EHEC (Acheson, 
2000), because the natural ecology of EHEC suggests that 
if strain O157:H7 decreases then another EHEC strain (or 
another pathogen) would simply fill the vacuum.  

Shedding of EHEC in cattle appears to be widespread, but 
sporadic (Meyer-Broseta et al., 2001).  EHEC shedding 
is highly dependent on season of the year (Gyles, 2007, 
Sargeant et al., 2007) and can range from as many as 
80% of all feedlot cattle in the summer, to as few as 
5-10% shedding during the winter (Barkocy-Gallagher et 
al., 2003, Elder et al., 2000, Naumova et al., 2007).  This 
correlates with an increase in human outbreaks during each 
summer/early fall, thus highlighting a linkage between the 
animal (reservoir) populations and consumers via food-
borne outbreaks (USDA-APHIS, 1997, Vugia et al., 2007).  
Seasonality of shedding has long been theorized to be 
related to temperature or weather (Barkocy-Gallagher et 
al., 2003, Naumova et al., 2007); however a recent theory 
has emerged that day length and melatonin or seasonal 
hormones may play a role in this phenomenon, however 
much further research is needed to investigate this intriguing 
hypothesis (Edrington et al., 2007, Edrington et al., 2006a, 
Schultz et al., 2005).  

Hides a reservoir of E. coli O157:H7
Bovine manure can harbor E. coli O157:H7 at the typical 
environmental temperatures for >49 d (Wang et al., 1996).  
Dirt and feces that collects on the hides of cattle can 
therefore be contaminated with E. coli O157:H7 for long 
periods of time (Arthur et al., 2007b, Barkocy-Gallagher 
et al., 2004, Keen and Elder, 2002, Reid et al., 2002).  
Research has indicated that the number of hides positive 
for E. coli O157:H7 is a more accurate predictor for carcass 
contamination than is fecal prevalence (Barkocy-Gallagher 
et al., 2003).  The incidence of hides contaminated by E. 
coli O157:H7 in studies ranged from 14% to 85% (Elam 
et al., 2003, Stephens et al., 2007, Woerner et al., 2006, 
Younts-Dahl et al., 2004).  Recently it was demonstrated 
that when a pen had a >20% fecal incidence rate, then the 
percentage of hides positive for of E. coli O157:H7 rose to 
26%; however when the fecal incidence rate in the pens 
was <20% then the hide contamination level was only 5% 
(Woerner et al., 2006).  Thus a common-sense approach to 
decreasing the prevalence of E. coli O157:H7 on hides has 
led to the development of methods to remove the hair from 
hides prior to dehiding/evisceration (Castillo et al., 1998, 
Nou et al., 2003) or to specialized treatments that reduce the 
pathogen load on the hide (Bosilevac et al., 2005, Bosilevac 
et al., 2004). Gregory et al. (2000) found that when cattle 
arrived at the slaughter plant the hides of cattle fed hay for 
48 h prior to transport were as clean as the hides of fasted 
cattle, and were significantly cleaner than pasture-fed cattle 
(Gregory et al., 2000).  

Do E. coli O157:H7 levels in the live animal really 
matter?
Data indicate that in-plant intervention strategies reduce the 
spread of E. coli O157:H7 on and between carcasses (Arthur 
et al., 2002, Barkocy-Gallagher et al., 2003, Bosilevac et al., 
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2006, Woerner et al., 2006).  If pre-harvest interventions 
can be introduced to reduce levels of E. coli O157:H7 that 
enter the abattoir within the live animal, we should be able 
to further enhance the effectiveness of in-plant intervention 
strategies (Callaway et al., 2004, Loneragan and Brashears, 
2005).  Thus reducing the burden of pathogens entering 
the abattoir should enhance human health (Hynes and 
Wachsmuth, 2000).  However direct infection via food is not 
the only route of human exposure to foodborne pathogenic 
bacteria.

The increasing disconnect between the consumer and their 
agricultural food supply is reflected in a growing number of 
direct-contact illnesses in humans contracted in farmyards, 
open farms, petting zoos, and zoological parks (Chapman 
et al., 2000, Edwards et al., 2008, Keen et al., 2007, Keen 
et al., 2003, Pritchard et al., 2000).  Recent years have 
seen an increase in human E. coli O157:H7 illnesses 
linked to water contaminated by run-off from feedlots and 
dairies (Anonymous, 2000, Edwards et al., 2008, Goss 
and Richards, 2007, Jay et al., 2007).  The spread of E. 
coli O157:H7 in runoff from farms has only been recently 
assessed to understand the movement of pathogens from 
farms during rainfall events (Berry et al., 2007, Ferguson et 
al., 2007).  Further concerns have been raised about the 
spread of E. coli O157:H7 to humans through crops (e.g., 
spinach or lettuce) irrigated with water from cattle farms 
(Gerba and Smith, 2005, Manshadi et al., 2001, Natvig et 
al., 2002).  The recent (2006), widespread E. coli O157:H7 
outbreaks linked to spinach and lettuce (Jay et al., 2007) 
contaminated by swine that had foraged on a dairy highlights 
the ability of EHEC to cause human illnesses through a 
variety of vectors, further emphasizing the need to reduce 
foodborne pathogenic bacteria in the live animal before they 
contact human consumers (Hynes and Wachsmuth, 2000, 
Loneragan and Brashears, 2005, Sargeant et al., 2007).  

Dietary effects on E. coli O157:H7 shedding in cattle
Fasting
Before and during transport, cattle can at times be fasted 
for up to 48 h, which can affect their susceptibility to 
colonization by E. coli O157:H7.  Ruminal and intestinal 
VFA concentrations limit E. coli populations because VFA 
are toxic (Hollowell and Wolin, 1965, Russell and Diez-
Gonzalez, 1998, Wolin, 1969).  This has allowed VFA 
and other organic acids to be used to reduce pathogen 
populations in the gut (Ohya et al., 2000, Prohaszka and 
Baron, 1983, Van Immerseel et al., 2006).  Because feed 
withdrawal and/or starvation results in decreased VFA 
concentrations in the gut, it has been suggested that this 
shift plays a role in the effects of transport on the shedding 
of EHEC.  

Fasting increased E. coli, Enterobacter and total anaerobic 
bacterial populations throughout the intestinal tract (Buchko 
et al., 2000b, Gregory et al., 2000), and increased Salmonella 
and E. coli populations in the rumen (Brownlie and Grau, 
1967, Grau et al., 1969), furthermore, fasting can cause 
“apparently E. coli (O157:H7) negative animals to become 
positive” (Kudva et al., 1995).  Further studies indicated that 
fasting made calves more susceptible to colonization by 
inoculated E. coli O157:H7, and demonstrated that fasted 
inoculated calves shed more E. coli O157:H7 than did 

calves fed normally (Cray et al., 1998).  Cattle fasted for 48 
h prior to slaughter also were shown to contain significantly 
greater E. coli populations throughout the gut than cattle 
fed hay or pasture (Gregory et al., 2000).  In contrast, it was 
demonstrated that a fasting period reduced ruminal VFA 
concentrations, but this did not influence E. coli O157:H7 
shedding (Harmon et al., 1999).  In general, studies 
examining the intestinal environment have repeatedly 
indicated that low pH and high concentrations of short chain 
VFA result in lower EHEC populations (Bach et al., 2002a, 
Bach et al., 2005b, Cobbold and Desmarchelier, 2004, Shin 
et al., 2002).  Thus research indicates fasting increases 
shedding or makes cattle more susceptible to colonization 
due to decreased short chain VFA and increased pH in the 
gastrointestinal tract.

Can feed additives and antimicrobials affect E. coli 
O157:H7?
Ionophores, such as monensin and lasalocid, are included 
in most feedlot and dairy rations to inhibit gram-positive 
bacteria, thereby improving feed:gain ratios and production 
efficiency (Callaway et al., 2003).  Because these feed 
additives can alter the microbial population, possibly giving 
gram-negative bacteria (such as E. coli) a competitive 
advantage, they were an obvious risk factor to investigate 
in regard to their role in colonization and shedding of E. coli 
O157:H7.  As expected, based upon the gram-negative 
membrane physiology of E. coli O157:H7, the most widely 
used ionophore (monensin) did not affect the growth or growth 
rate of this pathogen in vitro when added at concentrations 
similar to that found in the rumen of cattle fed monensin 
(Bach et al., 2002b), subsequently E. coli O157:H7 has been 
shown to be resistant to concentrations of monensin as high 
as 3-fold higher than that normally found in the rumen (Van 
Baale et al., 2004).  Ionophoric feed additives (monensin, 
lasalocid, laidlomycin and bambermycin) demonstrated no 
effect on E. coli O157:H7 in vitro (Edrington et al., 2003).

Early epidemiological studies demonstrated a marginally 
significant increase of EHEC shedding by heifers fed 
ionophores (Herriott et al., 1998), but others could not 
draw any conclusions (Dargatz et al., 1997).  Cattle fed a 
forage ration that included monensin shed E. coli O157:H7 
for a shorter period of time than forage-fed cattle not 
supplemented with monensin, but monensin had no effect 
on shedding when cattle were fed a corn-based ration (Van 
Baale et al., 2004).  In a recent in vitro study, it was found 
that monensin and the co-approved antibiotic tylosin (tylan) 
treatment reduced E. coli O157:H7 populations up to 2 log10 
CFU/ml in ruminal fermentations from cows fed forage, but 
did not affect E. coli O157:H7 populations in ruminal fluid 
from cows fed corn (McAllister et al., 2006).  The inclusion 
of monensin and tylosin did not alter fecal shedding of 
experimentally-inoculated E. coli O157:H7 when either 
were fed alone or in combination in cattle fed a barley 
(grain)-based diet (McAllister et al., 2006). These results are 
intriguing in that they suggest there is a potential interaction 
between diet type and antimicrobial treatment; however, no 
definitive proof of this linkage has been demonstrated.

Other feed additives have been examined such as 
ractopamine and neomycin.  Researchers found that the 
-agonist ractopamine, which is used to increase animal 
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growth performance, increased fecal shedding and cecal 
populations of E. coli O157:H7 in sheep (Edrington et al., 
2006b).  Neomycin is an antibiotic that is used to a limited 
degree in human medicine and is approved for use in cattle 
to treat enteric infections.  Neomycin was demonstrated 
to reduce E. coli O157:H7 populations in the gut (Elder et 
al., 2002, Ransom et al., 2003) and on the hides of cattle 
(Ransom et al., 2003).  However, this treatment has not 
been recommended to reduce E. coli O157:H7 in cattle due 
to antimicrobial resistance concerns.  

Probiotics and E. coli O157:H7
In order to enhance ruminant production efficiency, various 
probiotics (including yeast cultures, competitive exclusion 
[CE] products, and direct-fed microbials [DFM]) have been 
widely used in the cattle industry for many years (Dawson et 
al., 1990, Yoon and Stern, 1996).  These probiotic products 
have been primarily utilized to increase growth rate, milk 
production, or production efficiency (Callaway et al., 2005b, 
Fuller, 1989). A commercial Saccharomyces cerevisiae DFM 
culture was found to reduce E. coli O157:H7 populations in 
batch culture but not in a continuous flow culture system 
that simulated a bovine gut (Bach et al., 2003).  A probiotic 
culture comprised of Streptococcus bovis and Lactobacillus 
gallinarum from the rumen of cattle  reduced E. coli O157 
shedding when given to experimentally-infected calves, 
and this decrease was attributed to an increase in VFA 
concentration in the gut (Ohya et al., 2001).  

Other researchers have specifically developed probiotic 
products to reduce E. coli O157:H7 shedding in cattle.  A 
probiotic that contained S. faecium, or a mixture of S. 
faecium, L acidophilus, L. casei, L fermentum and L. 
plantarum significantly reduced fecal shedding of E. coli 
O157:H7 in sheep from 2-4 log10 CFU/g feces (Lema et al., 
2001); however, a probiotic compose solely of Lactobacillus 
acidophilus was ineffective (Lema et al., 2001).  A L. 
acidophilus culture that was derived from a cattle rumen 
reduced E. coli O157:H7 shedding by more than 50% 
when fed to feedlot cattle (Brashears and Galyean, 2002, 
Brashears et al., 2003a, Brashears et al., 2003b).  This 
culture reduced fecal shedding of E. coli O157:H7 in cattle 
from 46% to 13% (Ransom et al., 2003).  In a further 
refinement, L. acidophilus cultures were combined with 
Propionibacterium freudenreichii (a propionate-producing 
commensal bacteria) reduced the prevalence of E. coli 
O157:H7 in the feces from approximately 27% to 16% and 
reduced the prevalence on hides from 14% to 4% (Elam 
et al., 2003, Younts-Dahl et al., 2004).  Further work has 
again shown reductions in E. coli O157:H7 and Salmonella 
in feces and on hides (Stephens et al., 2007).  This 
probiotic improves the growth efficiency of cattle, which can 
economically pay for the cost of its inclusion in cattle rations 
as a food safety enhancement. 

Competitive exclusion (CE) is another strategy to eliminate 
E. coli O157:H7 (as well as Salmonella) from cattle 
intestinal tracts (Brashears and Galyean, 2002, Brashears 
et al., 2003a, Brashears et al., 2003b, Zhao et al., 2003).  
A defined population of multiple non-EHEC E. coli strains 
that were isolated from cattle that did not contain E. coli 
O157:H7, and found this generic E. coli CE culture could 

displace an established E. coli O157:H7 population from 
calves (Zhao et al., 1998).  

Feedstuffs and E. coli O157:H7 populations?
Finishing beef and lactating dairy cattle in the United States 
are fed high grain rations in order to maximize animal 
performance and production efficiency (Huntington, 1997).  
Ruminal bacteria can break down dietary starch, although 
some starch does reach the colon in an undegraded form 
where it undergoes microbial fermentation (Huntington, 
1997).  Fecal samples from cattle fed dry rolled corn, high-
moisture corn and wet corn gluten feed did not contain 
different populations of generic E. coli, or extreme acid-
resistant E. coli during a limit-feeding period (Scott et al., 
2000).  However, feces from cattle fed wet corn gluten 
ad libitum contained significantly higher concentrations of 
extreme acid resistant E. coli (resistant to an acid shock 
simulating passage through the human stomach) than did 
feces of cattle fed dry-rolled or high moisture corn (Scott et 
al., 2000).  

Barley is often fed in cattle rations, and is fermented more 
quickly than corn by the ruminal microbial population.  
This means that more starch is fermented in the lower 
gut of corn-fed cattle than in barley-fed cattle; resulting in 
barley-fed cattle having a higher fecal pH and lower VFA 
concentration compared with corn-fed animals (Bach et 
al., 2005a, Berg et al., 2004, Buchko et al., 2000a).  Barley 
feeding was linked (albeit at a low correlation) to increased 
E. coli O157:H7 shedding (Dargatz et al., 1997); and in 
experimental infection studies barley feeding was again 
associated with increased shedding of E. coli O157:H7 by 
feedlot cattle (Buchko et al., 2000a).  Feeding of barley-
based diets resulted in higher fecal pH compared to corn 
diets and resulted in higher E. coli O157:H7 prevalence and 
quantity of E. coli O157:H7 shedding compared to cattle 
fed corn-based rations (Berg et al., 2004).  Survival of E. 
coli O157:H7 in manure from corn-and barley fed cattle is 
approximately equal, therefore simple survival in the feces 
is not responsible for the increased prevalence of E. coli 
O157:H7 in barley-fed cattle (Bach et al., 2005b).  

Recent research has demonstrated that steam-flaked grains 
increased E. coli O157 shedding the feces compared to 
diets composed of dry-rolled grains (Fox et al., 2007).  This 
difference was theorized to be due to dry rolling allowing 
the passage of more starch to the hindgut where it was 
fermented to produce VFA thereby killing E. coli O157 (Fox 
et al., 2007).  This theory is supported by the fact that post-
ruminal starch infusion, increased generic E. coli populations 
in the lower gut numerically (Van Kessel et al., 2002).  

Comparing grain-fed to forage-fed cattle still indicates that 
more E. coli (including O157:H7) are present in the feces 
of cattle fed grain diets. In experimental inoculation studies 
the calves that consistently shed the highest concentrations 
of E. coli O157:H7 were fed a high concentrate (grain) diet 
(Tkalcic et al., 2000).  Ruminal fluid collected from steers fed 
a high-forage diet allowed E. coli O157:H7 to proliferate to 
higher populations in vitro than did ruminal fluid from high-
grain fed steers (Tkalcic et al., 2000), this was possibly due 
to differences in VFA concentrations between the ruminal 
fluids.  Other researchers found that feeding forage actually 
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increased the shedding of E. coli O157:H7 in cattle (Van 
Baale et al., 2004).  When cattle were fed forage E. coli 
O157:H7 was shed for 60 d compared to 16 for cattle on a 
grain-based diet (Van Baale et al., 2004).  However, it must 
be emphasized, that although populations E. coli O157:H7 
are generally lower in cattle fed forage diets, EHEC are 
still isolated from cattle solely fed forage, so forage feeding 
should not be viewed as a magic bullet (Hussein et al., 
2003b, Thran et al., 2001).

One of the most interesting developments involving dietary 
effects on pathogens in cattle has evolved from the recent 
surge in the use of corn to produce ethanol.  Distillers grains 
were shown to increase the shedding of E. coli O157:H7 in 
cow-calf operations in Scotland (Synge et al., 2003).  Other 
researchers found that feeding a related product (brewers 
grain) to cattle was also associated with increased E. coli 
O157 shedding, and increased the odds of shedding by 
more than 6-fold (Dewell et al., 2005).  More recent studies 
have shown that there is a positive association between 
distillers grain feeding and an increased prevalence of E. 
coli O157 (Jacob et al., 2008a, Jacob et al., 2008b).  The 
individual animal prevalence of feedlot cattle shedding E. 
coli O157 on d 122 (but not d 136) was higher in cattle 
fed 25% wet distiller’s grain (WDG) compared to control 
diets lacking WDG (Jacob et al., 2008b), but the pen-level 
shedding was unaffected by WDG feeding.  In a follow-up 
study, cattle were fed a steam-flaked corn diet supplemented 
with 0% or 25% dried distiller’s grain (DDG).  Pen floor fecal 
sample prevalence of E. coli O157 was significantly higher 
across a 12 week finishing period in cattle fed 25% DDG 
and either 15% or 5% corn silage compared with cattle 
fed 0% DDG and 15% corn silage (Jacob et al., 2008a).  
Further studies found that DDG significantly increased 
fecal shedding and intestinal populations of inoculated E. 
coli O157:H7 compared to calves fed a steam-flaked corn 
based ration (Jacob et al., 2008c).  It is important to note 
that the extent of the increase in E. coli O157:H7 is variable, 
and a great deal of variation occurs between sources and 
even batches of distillers grains.  The underlying biology 
behind this effect has not been elucidated to this point, 
but it has been suggested that difference could be due to 
intermediate endproducts of the yeast fermentation (e.g., 
vitamins, organic acids), however these suggestions 
remain hypotheses.  In vitro studies in our laboratory have 
detected no effects of DG on E. coli O157:H7 populations 
in mixed ruminal and fecal fluid fermentations (Callaway et 
al., unpublished).  While the magnitude of these DG effects 
is relatively small and variable, it underlines the point that 
diet can potentially significantly impact E. coli O157:H7 
populations in the gut of cattle.  

Orange peel and pulp included at 2% of the total volume have 
been demonstrated to have anti-E. coli O157:H7 activity in 
in vitro fermentations (Callaway et al., 2008, Callaway et al., 
2005a, Fisher and Phillips, 2006).  This effect appears to 
be a result of the antimicrobial action of essential oils (e.g., 
limonene) found in the peel (Callaway et al., 2008).  Other 
research has found that feeding an Ascophyllum nodosum 
supplement reduced E. coli O157:H7 populations in feces 
from 35% to 10% and reduced hide sample positives 
from 85% to less than 50% (Braden et al., 2004).  These 
results underscore that certain feedstuffs and diet can exert 

potent effects on the microbial population and can be used 
to control pathogens in certain circumstances and dietary 
regimens.  

Forage to grain dietary shifts: their effects on fecal E. coli 
and E. coli O157:H7 populations

Escherichia coli can and does thrive in the lower gut of 
animals fed high grain diets, as well as those fed forage diets 
(Hussein et al., 2003a, Hussein et al., 2003b, Jacobson et 
al., 2002)  However, shifting the forage to grain ratio in cattle 
rations can affect E. coli O157:H7 shedding, Early studies 
investigating E. coli and dietary effects indicated that a 
sudden decrease in hay intake by cattle increased fecal E. 
coli populations (Brownlie and Grau, 1967) and overfeeding 
of cattle with grain caused an increase in total fecal 
coliform counts (Allison et al., 1975).  Other studies using 
experimentally infected sheep found a sudden switch from 
an alfalfa pellet diet to a low quality forage diet increased E. 
coli O157:H7 shedding (Kudva et al., 1995).  Sheep shifted 
from a 50:50 corn/alfalfa ration to poor quality grass hay 
shed greater populations of E. coli O157:H7 than did sheep 
fed a corn/alfalfa ration (Kudva et al., 1997).  

In the study that started a great deal of controversy on this 
topic, cattle fed a 90% corn/soybean meal ration (feedlot-
type ration) contained generic E. coli populations that were 
1000-fold higher than cattle fed a 100% good-quality hay 
(Timothy) diet (Diez-Gonzalez et al., 1998).  The E. coli 
recovered from the feces of grain-fed cattle in this study 
were 1000-fold more resistant to an “extreme” acid shock 
that simulated passage through the human stomach than 
were E. coli from cattle fed only hay (Diez-Gonzalez et al., 
1998).  When cattle were abruptly switched from a 90% grain 
finishing ration to a 100% hay diet, fecal E. coli populations 
declined 1000-fold, and the population of E. coli resistant to 
an acid environment similar to that of the human stomach 
declined more than 100,000-fold within 5 d (Diez-Gonzalez 
et al., 1998).  It is important to note that in this study no E. 
coli O157:H7 were detected.  Based on these results the 
authors suggested that feedlot cattle be switched from high 
grain diets to hay for 5 days prior to slaughter to reduce E. 
coli contamination entering the abattoir (Diez-Gonzalez et 
al., 1998).  

Although it appears that brief periods of hay feeding can 
affect E. coli populations research indicates that a brief 
period does not have a significant impact on carcass 
characteristics but does change final BW (Stanton and 
Schutz, 2000).  When cattle were fed hay during the final 
portion of the finishing period, they had lower DMI and lost 
an average of 2.2 lb/head/d and did not significantly impact 
carcass weight, dressing percentage, carcass grades, or 
quality parameters, but did significantly reduce total coliform 
counts as well as generic E. coli counts (Stanton and 
Schutz, 2000), but the impact was not as great as that seen 
by Diez-Gonzalez et al. (1998).  Keen et al., (1999) found 
that switching cattle from grain to hay caused a decrease 
in body weight (approximately 1.25 lb/hd/d compared to 
controls).  Over 200 cattle maintained on a grain ration were 
screened for natural E. coli O157:H7 infection and 53% 
were found to be positive (Keen et al., 1999).  When these 
cattle were divided into two groups and one was fed grain 
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and the other abruptly switched to hay, 52% of the grain-fed 
controls remained E. coli O157:H7 positive, but only 18% of 
the hay-fed cattle continued to shed E. coli O157:H7 (Keen 
et al., 1999).  

The proposal of such a dietary switch to reduce E. coli 
O157:H7 shedding provoked a great deal of scientific 
controversy (Diez-Gonzalez et al., 1998, Hancock et al., 
2000) and led to several studies that have subsequently 
evaluated the effect of radical dietary shifts on E. coli 
populations in cattle, however these studies have also 
produced conflicting results (Table 1).  When cattle were fed 
a high-concentrate diet and switched to a diet containing 
50% corn silage and 50% alfalfa hay, generic E. coli counts 
decreased (Jordan and McEwen, 1998).  Cattle fed an 80% 
barley ration (which as shown previously tends to increase 
EHEC shedding) were fasted for 48 h and then subsequently 
switched to 100% alfalfa silage did not exhibit any change in 
E. coli O157:H7 shedding (Buchko et al., 2000b).  However, 
when these same forage-fed animals were again fasted 
for 48 h and re-fed 100% alfalfa silage, the prevalence of 
E. coli O157:H7 shedding increased significantly (Buchko 
et al., 2000b).  In a study using experimentally infected 
cattle, Researchers found that cattle fed hay shed E. coli 
O157:H7 significantly longer than did grain-fed cattle (42 
d vs. 4 d), but E. coli O157:H7 populations shed were 
similar between dietary regimes and the diet shift did not 
affect the acid resistance of E. coli O157:H7 (Hovde et al., 
1999).  When cattle were abruptly switched from a finishing 
diet that contained wet corn gluten feed to alfalfa hay for 
5 d, colonic pH increased almost 1 pH unit, total E. coli 
populations decreased approximately 10-fold (Scott et al., 
2000).  These authors concluded “increased colonic pH was 
not associated with reduced populations of acid resistant E. 
coli” but “feeding hay for a short duration can reduce acid-
resistant E. coli populations” (Scott et al., 2000).  

In research that approached this question from a different 
perspective, it was found that when cattle switched from 
forage-type diets (bromegrass hay or corn silage) to a 
high grain finishing ration, fecal and ruminal generic E. coli 
concentrations increased (Berry et al., 2006).  However, 
in this study E. coli O157:H7 levels were not significantly 
impacted (Berry et al., 2006).  In another study, switching 
cattle from pasture to hay for 48 h prior to slaughter 
significantly reduced the E. coli population throughout 
the gut, and found that hay feeding increased intestinal 
Enterococci populations that were capable of inhibiting 
E. coli populations (Gregory et al., 2000).  Based on their 
data, the authors concluded, “the most effective way of 
manipulating gastro-intestinal counts of E. coli was to feed 
hay” (Gregory et al., 2000).  Collectively, these results 
emphasize that dietary manipulations could be a powerful 
method to reduce E. coli/EHEC populations in cattle prior 
to harvest.

A theory addressing the effects of forage and dietary 
shifts on E. coli O157:H7 populations
It appears that a dietary shift does cause changes in 
the microbial populations, including E. coli O157:H7, 
yet studies investigating this phenomenon have often 
produced contradictory results (Table 1).  Shifting the diet 
abruptly obviously causes a change in the availability and 

concentrations of substrates available for fermentation in 
the lower intestinal tract, as well as the members of the 
microbial intestinal population.  Grain-based diets tend to 
yield higher levels of E. coli in the feces due to the higher 
availability of starch.  A change from grain diets to hay 
shifts the site and extent of digestion toward the rumen, 
and reduces starch availability in the colon.  This change 
in nutrient availability furthermore causes a rapid shift in 
the microbial population of the gut, and some organisms 
selected for by hay feeding (such as Enterococcus) can 
exhibit competitive exclusion type behavior (Gregory et al., 
2000), displacing established E. coli O157:H7 populations 
or preventing colonization (Callaway and Martin, 2006, 
Schneitz, 2005).  Increasing the fiber component of the diet 
also increases the undigestible component of the diet which 
can physically “scrape” the gut mucosa which has been 
shown be colonized by E. coli O157:H7 (Lim et al., 2007, 
Low et al., 2005, Naylor et al., 2003), and could physically 
remove these organisms.  

Comparing results from dietary switch studies, it appears 
that some component of forage quality is involved in some 
of the differences (e.g, switching to alfalfa hay vs. switching 
to sagebrush).  To date, however it has not been clearly 
demonstrated which aspect of forage quality is involved 
because none of these studies have used similar diets, 
protocols or E. coli/EHEC isolation techniques, thereby 
preventing direct comparison.  We theorize that some 
factors intrinsic to forages may explain some of this effect, 
as well as some of the inconsistencies found between 
forages used.  

Tannins are anti-nutritional polyphenols that are found in 
some forages, which have been shown to inhibit the growth 
of ruminal bacterial (Nelson et al., 1997, Nelson et al., 
1998).  Tannins inhibit and kill E. coli O157:H7 in in vitro 
studies and were found to reduce the shedding of generic 
E. coli over a 15 d period in steers fed tannins (Min et al., 
2007).  Additionally, as forages mature concentrations of the 
carbohydrate lignin, which contains carboxylic phenols such 
as p-coumaric acid and vanillin (Heppner, 1968, Martin, 
1970).  It has been long known that these components of 
lignin are bactericidal (Martin, 1990), but only recently has 
research demonstrated that these compounds are capable 
of killing E. coli O157:H7 in vitro and in manure (Wells et al., 
2005).  These data suggest a theory that forage quality and 
components may play a role in reducing E. coli O157:H7 
in food animals, and that variation in the concentration of 
tannins and/or lignin in forages tested in various studies may 
be responsible for the variance in the dietary shift studies.  
In general, the greatest reductions in E. coli O157:H7 
populations have been observed when cattle were switched 
to high quality forages; yet high concentrations of tannins 
and lignin are negatively correlated with forage quality.  
Therefore, details surrounding this hypothesis obviously 
need to be examined further.  However, given the effects 
phenolic compounds have in altering the efficiency of the 
ruminal fermentation (Martin, 1990, Nelson et al., 1997), it 
is possible that, while tannins and carboxylic phenols do 
directly kill E. coli O157:H7 at physiologically unrealistic 
concentrations, when phenolics are added to in the intestinal 
consortium the phenolic compounds could still provide a 
competitive advantage to organisms that compete against  
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E. coli O157:H7, helping to reduce its populations in the 
intestinal ecosystem.   

Conclusions
The United States has one of the safest food supplies, yet 
food-borne pathogenic bacteria are still significant threats 
to human health, including Enterohaemorrhagic E. coli.  
Post-harvest sanitation strategies have reduced E. coli 
O157:H7 in meat products, but pre-harvest intervention 
strategies offer methods to reduce pathogen populations in 
food animals before they enter the food chain.  Reductions 
in E. coli O157:H7 shedding on farms can reduce human 
exposures through water supplies, fruits and vegetables, as 
well as via direct animal contact.  Some feedstuffs do appear 
to alter shedding levels of E. coli O157:H7, but these effects 
have not always been consistent.  Fasting and feeding poor 
quality forages have been shown to increase shedding 
of E. coli O157:H7 in cattle; however abruptly switching 
cattle from a high grain ration to a high-quality hay-based 
diet has been shown to reduce generic E. coli and E. coli 
O157:H7 populations.  However, switching all feedlot cattle 
in the U.S. from grain-based diets to hay prior to slaughter 
is not practical.  Further research is needed to elucidate the 
mechanism (e.g., competitive exclusion, physical removal, 
forage quality, tannins, lignin, other phenolics) by which 
forage-feeding impacts the microbial ecology of the bovine 
intestinal tract, including the ecology of E. coli and E. coli 
O157:H7 populations, so that economically viable and 
practical dietary modifications can be implemented.  
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