A Baker’s Yeast Mutant (fil1) With a Specific, Partially Inactivating Mutation in Adenylate Cyclase Maintains a High Stress Resistance During Active Fermentation and Growth

Patrick Van Dijck1,2, Pingsheng Ma1, Matthias Versele1, Marie-Françoise Gorwa3, Sonia Colombo1,2, Katleen Lemaire1,2, Daniela Bossi1, Annie Loïez3 and Johan M. Thevelein1*

1Laboratorium voor Moleculaire Celbiologie and 2Flemish Interuniversity Institute for Biotechnology-VIB, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, B-3001 Leuven-Heverlee, Flanders, Belgium
3Lesaffre Développement, Rue Gabriel Péri 147, F-59706 Marcq-en-Baroeul, Cedex, France.

Abstract

The initiation of fermentation in the yeast Saccharomyces cerevisiae is associated with a rapid drop in stress resistance. This is disadvantageous for several biotechnological applications, e.g. the preparation of freeze doughs. We have isolated mutants in a laboratory strain which are deficient in fermentation-induced loss of stress resistance (‘fil’ mutants) using a heat shock selection protocol. We show that the fil1 mutant contains a mutation in the CYR1 gene which encodes adenylate cyclase. It causes a change at position 1682 of glutamate into lysine and results in a tenfold drop in adenylate cyclase activity. The fil1 mutant displays a reduction in the glucose-induced cAMP increase, trehalase activation and loss of heat resistance. Interestingly, the fil1 mutant shows the same growth and fermentation rate as the wild type strain, as opposed to other mutants with reduced activity of the cAMP pathway. Introduction of the fil1 mutation in the vigorous Y55 strain and cultivation of the mutant under pilot scale conditions resulted in a yeast that displayed a higher freeze and drought resistance during active fermentation compared to the wild type Y55 strain. These results show that high stress resistance and high fermentation activity are compatible biological properties. Isolation of fil-type mutations appears a promising avenue for development of industrial yeast strains with improved stress resistance during active fermentation.

Introduction

In the yeast Saccharomyces cerevisiae an opposite relationship exists between stress resistance and fermentation activity. Yeast cells growing on nonfermentable carbon sources and stationary-phase cells display a high stress resistance. Cells growing on glucose or other rapidly-fermented sugars, on the other hand, have a much lower stress resistance (Plesset et al., 1987; Schenberg-Frascino and Moustacchi, 1972). The initiation of fermentation after addition of glucose is invariably associated with a rapid drop in stress resistance (Van Dijck et al., 1995).

The low stress resistance during active fermentation of yeast is disadvantageous for its use in industrial applications (Attfield, 1997). A striking example is the preparation of freeze doughs. When the flour is mixed with the yeast for the preparation of the dough, the yeast initiates fermentation and at the same time the freeze resistance of the yeast rapidly drops (Nagodawithana and Trivedi, 1990; Rose and Vijayalakshmi, 1993). To minimize the problem, freeze doughs are prepared by rapid mixing of the dough at low temperature. However, a minimal prefermentation of the dough appears to be necessary for a good quality of the bread (Hsu et al., 1979a; Hsu et al., 1979b; Richard-Molard et al., 1979). As a result of the drop in dough rising capacity during preparation of freeze doughs more yeast has to be added which has a negative influence on the taste of the bread.

In S. cerevisiae the cAMP-PKA pathway exerts a strong influence on cellular stress resistance. Yeast mutants with elevated activity of the pathway display a lower stress resistance while mutants with reduced activity of the pathway display enhanced stress resistance (Cameron et al., 1988; Park et al., 1997; Sass et al., 1986; Shin et al., 1987a; Toda et al., 1987a; Toda et al., 1987b). However, the cAMP-PKA pathway also influences the growth rate of the cells. Inactivation of the pathway causes growth arrest in the G1 phase of the cell cycle followed by permanent entry into the stationary phase G0 (Ishikawa et al., 1986; Martegani et al., 1986; Shin et al., 1987b). Reduction of adenylate cyclase or PKA activity leads to a reduction in the growth rate of the cells, a much longer lag phase and a reduced fermentation rate (Ma et al., 1997). Hence, it did not appear to be a promising approach to enhance stress resistance in industrial yeast strains. In this paper, however, we describe a specific mutation in adenylate cyclase that reduces its activity to such an extent that stress resistance is significantly enhanced without negatively affecting the growth and fermentation rate.

Addition of glucose to yeast cells growing on a nonfermentable carbon source or stationary phase cells triggers a spike in the cAMP level which sets off a PKA-
mediated protein phosphorylation cascade with a rapid drop in stress resistance as one of the physiological consequences (Reviews: Thevelein, 1991; Thevelein and de Winde, 1999). Recent work has shown that glucose activation of the cAMP pathway involves a G-protein coupled receptor system, consisting of a serpentine-receptor like protein, Gpr1, and a heterotrimeric Gα protein, Gpa2 (Colombo et al., 1998; Kraakman et al., 1999). However, glucose phosphorylation is also required in some way for activation (Beullens et al., 1988). Mobilisation of trehalose (Thevelein and Beullens, 1985; van der Plaat, 1974) and repression of genes encoding heat shock proteins (Bissinger et al., 1989; Pernambuco et al., 1996) are two possible factors involved in the glucose-induced loss of stress resistance (Parsell et al., 1993; Van Dijck et al., 1995; Wemken, 1990).

In this paper we describe a mutation in adenylate cyclase that causes a significant delay in glucose-induced mobilisation of trehalose and disappearance of heat shock protein messengers concomitant with a delay in glucose-induced loss of stress resistance. Since the mutation does not cause a delay in the initiation of growth and fermentation, it appears to offer a promising avenue for the development of industrial yeast strains with an improved maintenance of stress resistance during the initiation of fermentation.

Results

Isolation of the fil1 Mutant
We have screened EMS-mutagenised yeast strains for mutants displaying a better maintenance of heat stress resistance during the initiation of fermentation. Three strains were used: the wild type strain M5 and the mutant strains tps1Δ hxk2Δ and hxxk2Δ in the same genetic background. The tps1Δ mutant was used because it cannot synthesise trehalose. A tps1Δ mutant, however, is unable to ferment and to grow on glucose because of deficient regulation of glucose influx into glycolysis (Thevelein and Hohmann, 1995). Hence, we have used the tps1Δ hxk2Δ strain, since the hxxk2Δ mutation suppresses this glucose negative phenotype (Hohmann et al., 1993). The mutagenised cultures were grown to stationary phase and the cells were subsequently given 2% glucose to initiate fermentation. After 90 min in the presence of glucose a heat shock (30 min at 52°C) was given to kill cells that lost their heat resistance in a similar way as the non-mutagenised strain. To increase the stringency of the selection the same procedure was repeated with the surviving cells. A mutant (PVD1050) with the hxxk2Δ background showed the best maintenance of heat resistance during the initiation of fermentation and was selected for further characterisation. The mutation was called fil1, for ‘deficient in fermentation-induced loss of stress resistance’.

The Phenotype of the fil1 Mutant is Due to a Single, Recessive Mutation
The original fil1 mutant in the hxxk2Δ background (PVD1050) showed a remarkably high maintenance of heat resistance: after 30 min of fermentation it still displayed 100% survival upon heat shock whereas survival of the hxxk2Δ strain was less than 10% (Figure 1A). The fil1 hxxk2Δ mutant was crossed with the wild type strain M5 and the diploid strain showed the same rapid loss of heat resistance as the isogenic diploid wild type strain, indicating that the fil1 mutation is recessive (results not shown). Tetrad analysis of a fil1+/ hxxk2Δ+ diploid strain indicated a two-to-two segregation of the heat-stress resistant phenotype and lack of linkage between this phenotype and the hxxk2Δ mutation (results not shown). A segregant (PVD1150) with the heat-stress resistant phenotype but without the hxxk2Δ mutation was selected for further study. This fil1 mutant showed a faster glucose-induced loss of heat resistance than the original double mutant fil1 hxxk2Δ, while the hxxk2Δ mutant showed a somewhat better maintenance of heat resistance than the wild type strain (Figure 1A). Before and at all time points after addition of glucose the heat resistance of the fil1 mutant was much higher than that of the wild type strain. Also the loss of heat resistance itself was slower in the fil1 mutant than in the wild type strain. Before addition of glucose survival after heat shock was 10 times higher in the fil1 mutant compared to the wild type strain while it was 100 times higher 90 min after addition of glucose (Figure 1A). The double mutant fil1 hxxk2Δ showed a remarkable maintenance of heat resistance after addition of glucose. Even after 90 min the survival percentage after a heat shock of 30 min at 52°C, that killed 99.9% of the cells of the wild type strain, was still 100% for the double mutant.

The fil1 Mutant Displays the Pleiotropic Phenotype of a cAMP Pathway Mutant
The fil1 mutation also strongly affected the trehalose content of the cells. The initial level of trehalose, before addition of glucose to the cells, was 6-8 times higher in the two strains containing the fil1 mutation (fil1 and fil1 hxxk2Δ) compared to the control strains (wild type and hxxk2Δ) (Figure 1B). The latter two strains had a similar initial trehalose level and trehalose mobilisation after addition of glucose. Although the fil1 mutant also displayed a rapid glucose-induced trehalose mobilisation, the trehalose content remained higher than in the wild type strain up to 90 min after addition of glucose. Up to 60 min after addition of glucose the trehalose content in the fil1 mutant was at least as high as the initial level in the wild type strain. In the fil1 hxxk2Δ strain the effect on trehalose content was even more striking. Up to 90 min after addition of glucose virtually no net mobilisation of trehalose had occurred (Figure 1B). Since the hxxk2Δ strain showed a very similar trehalose mobilisation as the wild type strain, the combination of fil1 and hxxk2Δ apparently results in a synergistic inhibitory effect on trehalose mobilisation.

Glucose-induced trehalase activation was reduced in the fil1 mutant compared to the wild type strain and even more in the fil1 hxxk2Δ strain compared to the hxxk2Δ strain (Figure 1C), which correlates qualitatively with the effect on trehalose mobilisation (Figure 1B). However, the near-absence of trehalase mobilisation in the fil1 hxxk2Δ strain, at least up to 90 min after glucose addition, indicates that the activation of trehalase observed in that strain is either not sufficient to trigger trehalose mobilisation or that trehalose is also synthesised at the same time. Western blot experiments, using antibodies raised against the whole trehalose synthase complex, have revealed a tenfold overexpression of Tps1, Tps2 and Ts1 in the fil1 mutants (results not shown). This is consistent with the much higher trehalase level in the fil1 mutants and the resulting high trehalose synthesising capacity might explain the absence
Figure 1. Effect of the *fil1* mutation on cAMP synthesis and cAMP pathway targets. A-E: glucose-induced effects. A. Loss of heat resistance. B. Trehalose mobilisation. C. Activation of trehalase. D. Repression of STRE-controlled Heat Shock Protein genes. E. cAMP increase. F. Intracellular-acidification induced cAMP increase (2,4-dinitrophenol at pH 6). Strains: wild type M5 (●), *hxk2Δ* (○), *fil1Δ* (▲) and *fil1Δ hxk2Δ* (▲).

of rapid glucose-induced trehalose mobilisation in spite of significant activation of trehalase.

Other factors known to be involved in conferring stress resistance in yeast are the heat shock proteins (Parsell *et al.*, 1993), in particular Hsp104 (Sanchez *et al.*, 1992). In the *fil1* mutant there was only a slight delay in the glucose-induced disappearance of the messengers of *HSP104*, *HSP26* and *SSA3* (encoding Hsp70) compared to the wild type strain (Figure 1D). Also in the *fil1 hxk2Δ* strain repression of the STRE-controlled genes was only slightly delayed compared to the *hxk2Δ* control strain (Figure 1D). At time points between 30 and 180 min after addition of glucose there was no detectable difference anymore in the messenger levels (results not shown). This appears to indicate that still other factors play a role in the much higher maintenance of heat resistance in the two *fil1* mutant strains.
We have also investigated whether the fil1 mutation affected cAMP accumulation in vivo. For the glucose-induced cAMP signal we added 100 mM glucose 3 min after the addition of 2.5 mM glucose, to clearly separate the glucose-induced effect on cAMP synthesis from the effect of intracellular acidification (Colombo et al., 1998). As shown in Figure 1E, the fil1 mutant surprisingly displayed a very similar increase in cAMP after addition of 100 mM glucose compared to the wild type strain. Also in the fil1 hxk2Δ mutant there was only a slight reduction compared to the hxk2Δ strain. We also tested the increase in cAMP triggered by intracellular acidification. For that purpose 2 mM 2,4-dinitrophenol was added at an extracellular pH of 6 to cells of the four strains. Interestingly, in this case there was a strong reduction of the agonist-induced cAMP increase, pointing to a reduced cAMP accumulation capacity of the cells (Figure 1F). Closer examination of the cAMP increase triggered by 2.5 mM glucose, which is considered to be due to intracellular acidification (Colombo et al., 1998), also shows a strong effect of the fil1 mutation in both strains. When the glucose-induced cAMP signal was measured without pre-addition of a low glucose concentration, the signal was also reduced in the fil1 mutant compared to the wild type strain (results not shown).

Fil1 is a Partially Inactivating Point Mutation in *CYR1*, the Gene Encoding Adenylate Cyclase

We transformed the fil1 mutant with the CDC25, RAS2, CDC35 and TPK1 genes each on a single copy plasmid. Expression of all these genes reduced to some extent the elevated heat resistance of the fil1 mutant (results not shown). Subsequently, we transformed the fil1 mutant with a single copy genomic library and screened for clones suppressing the heat-resistant phenotype. All genes isolated turned out to be suppressor genes rather than the Fil1 gene. One of the suppressor genes was *SFI1*, an essential gene involved in mitosis (Ma et al., 1999). Hence, we decided to identify the gene by mapping and chromosome walking. The fil1 mutant was crossed with a set of mapping strains obtained from the Yeast Genetic Stock Center (see Materials and Methods) and the segregants were tested for linkage between the heat-stress resistant phenotype and the markers. The results indicated that the fil1 mutation was centromere linked on chromosome X (results not shown). Subsequently, five genomic sections of about ten kb each, located on the left arm and five located on the right arm of chromosome X next to the centromere, were amplified by PCR. The DNA fragments were expressed in the fil1 mutant and the transformants tested for complementation of the heat resistant phenotype. Only one of the fragments caused complementation. It contained the CYR1 gene, encoding adenylate cyclase, and the CTK2 gene. Subcloning showed that only the CYR1 gene complemented the fil1 mutant (results not shown).

The precise location of the mutation in the fil1 allele of *CYR1* was determined with the gap filling method (Iwasaki et al., 1991). Different gaps were introduced in the wild type *CYR1* allele and filled by expression in the fil1 mutant. Only one single fragment (Xho-BstEII) located in the 3' part of the gene, was unable to complement the fil1 mutant (results not shown). Sequence analysis of this fragment either recovered by the gap filling method or PCR amplified using genomic DNA of the fil1 mutant indicated that a single point mutation was present. It changed a glutamate residue into a lysine residue at position 1682 in the amino acid sequence.

Previously, several domains in yeast adenylate cyclase have been identified: a N-terminal inhibitory domain, a leucine-rich repeat domain, a domain required for Ras responsiveness and a C-terminal catalytic domain, flanked by a short domain required for interaction with the Cap/Srv2 subunit at the extreme C-terminus. A large leucine-rich repeat domain and a spacer region which was shown to be required for Ras responsiveness are located in the middle of the enzyme. The fil1 mutation (E1682K) is located in the beginning of the catalytic domain. B. Multiple alignment of fungal adenylate cyclases. Glutamate1682 is conserved in all enzymes except in that of *Candida albicans* where this residue is changed into an aspartate, a conservative substitution.

Figure 2. A. Scheme of functional and structural domains in *S. cerevisiae* adenylate cyclase. A large inhibitory domain is located in the N-terminal part of the enzyme. The much smaller catalytic domain is located at the C-terminus of the enzyme and is flanked by a small domain involved in binding of the Cap/Srv2 subunit at the extreme C-terminus. A large leucine-rich repeat domain and a spacer region which was shown to be required for Ras responsiveness are located in the middle of the enzyme. The fil1 mutation (E1682K) is located in the beginning of the catalytic domain. B. Multiple alignment of fungal adenylate cyclases. Glutamate1682 is conserved in all enzymes except in that of *Candida albicans* where this residue is changed into an aspartate, a conservative substitution.
et al., 1986). Introduction of other mutations at the same site led to enhanced or attenuated activity depending on the new amino acid introduced (Feger et al., 1991).

To investigate whether the fil1 mutation affected catalytic activity of adenylate cyclase we have determined the activity of the enzyme in purified plasma membranes. The cells were grown on glucose into exponential phase or stationary phase and on glycerol into exponential phase. Adenylate cyclase activity was assayed in the presence of either manganese ions (G-protein independent activity), magnesium ions or magnesium ions and the nonhydrolyzable GTP analogue guanosine-5’(β,γ-imino)triphosphate, GPP(NH)P (Figure 3). In the three conditions enzyme activity was strongly reduced in the fil1 mutant compared to the wild type strain and this was observed for all three growth conditions. The expression of the CYR1 gene was also significantly enhanced in the fil1 mutant at the mRNA level but not at the protein level (results not shown). In the fil1 mutant the activity with magnesium and GPP(NH)P was similar to that with manganese. Both in the wild type strain and the fil1 mutant the addition of GPP(NH)P caused a strong increase in adenylate cyclase activity. This shows that the fil1 mutation does not affect the stimulation of adenylate cyclase by active G-protein but rather reduces intrinsic adenylate cyclase activity. Hence, the phenotype of the fil1 mutant does not appear to be caused by a specific reduction in the responsiveness of adenylate cyclase to agonist stimulation, but rather by a lowering of the maximal activity that can be attained. This fits with the observation that the glucose-induced cAMP signal is not abolished in the fil1 mutant but at most partially reduced.

The fil1 Mutant Has a Normal Growth and Fermentation Rate

Since mutants with reduced activity of the cAMP pathway are known to have a reduced growth rate and inactivation of the pathway causes permanent arrest in G0, we investigated whether the fil1 mutant was compromised for growth rate and for fermentation activity. Whereas the original fil1 hxk2 strain displayed a reduced growth rate and ethanol production compared to the wild type strain, the growth rate and ethanol production of the fil1 mutant was not significantly different from that of the wild type strain (Figure 4). The final cell density of the fil1 mutant was somewhat higher than that of the wild type strain and ethanol reutilisation apparently somewhat slower (Figure 4). No growth defect on ethanol or other nonfermentable carbon sources, however, was observed (results not shown).

Introduction of the fil1 Mutation in Other Genetic Backgrounds

To examine whether the fil1 mutation could be used for the development of industrial baker’s yeast strains with enhanced maintenance of stress resistance during the initiation of fermentation, we have introduced the mutation first in two other haploid laboratory strains with different genetic backgrounds, SP1 and W303-1A. The fil1 mutants in the genetic backgrounds SP1, W303-1A and M5, displayed a similar increase in heat resistance in plate assays and also the maintenance of heat resistance during the initiation of fermentation was similar for the three strains (results not shown). The higher cell density was found in all genetic backgrounds tested. The cAMP signal was reduced with about 50% in the fil1 mutants compared to the isogenic wild type strains (results not shown). Finally we also tested the desiccation resistance of the fil1 mutant in two genetic backgrounds (M5 and SP1). For this purpose the residual fermentation capacity of the strains after drying was determined. The fil1 mutants displayed a somewhat lower fermentation capacity before drying (Table 1). However, after drying and rehydration either at 20°C or 38°C the wild type strains rapidly lost fermentation capacity while the fil1 mutants showed a much better maintenance of their fermentation capacity (Table 1).

Enhanced Stress Resistance in the Y55-fil1 Strain After Production in Pilot Scale

To further evaluate the usefulness of the fil1 mutation we have introduced it into a vigorously growing diploid laboratory strain, Y55, that can be cultivated in pilot scale under similar conditions as industrial yeast strains. The homozygous Y55-fil1 mutant showed the same growth rate as the corresponding Y55 wild type strain and could also be grown under pilot scale at the same dilution rate as the Y55 wild type strain (results not shown). The yeast produced in this way was used for the preparation of frozen doughs. The frozen doughs were stored for different periods of time at -20°C, after which they were thawed and the gassing power measured. The results show that after prolonged storage the fil1 mutant kept a higher fermentation
capacity than the wild type strain (Figure 5A). This confirms the potential of the fil1 mutation for the construction of industrial yeast strains with a better maintenance of freeze resistance. Similarly, when the yeast produced in pilot scale was tested for drying resistance, the fil1 mutant showed a better retention of gassing power both in doughs with 1g and 4g sucrose (Figure 5B). This confirms that the fil1 mutant in general displayed a higher stress resistance than the wild type strain.

Discussion

Fil1 is Allelic with CYR1 Encoding Adenylate Cyclase

Characterisation of the phenotype of the fil1 mutant showed that it displayed the typical phenotype of a yeast mutant with reduced activity of the cAMP-PKA pathway. However, epistasis analysis with the main positively acting components of the pathway, CDC25, RAS2, CYR1 and TPK1, on single-copy plasmids indicated that they all to some extent suppressed the fil1 phenotype. For a linear signaling pathway this would normally indicate that the FIL1 gene product is located upstream of the first component, in this case Cdc25. The finding that the fil1 mutation was allelic with the CYR1 gene, encoding adenylate cyclase, was therefore rather unexpected. Moreover, inactivation of CYR1 is lethal and partial inactivation of the cAMP-PKA pathway was known to reduce significantly the growth rate. The fil1 mutation did not cause a growth problem. However, in view of the fact that the fil1 mutation only partially inactivates adenylate cyclase it is understandable that enhanced expression of an upstream activating component can enhance the partial activity of the fil1 allele of adenylate cyclase and therefore to some extent cause suppression of the fil1 phenotype.

Intracellular acidification and glucose stimulate cAMP synthesis by two different mechanisms. Intracellular acidification activates the Ras proteins whereas the effect of glucose is mediated by the Gpr1-Gpa2 GPCR-like system (Thevelein and de Winde, 1999). The fil1 mutation clearly had a much stronger reducing effect on acidification-induced cAMP accumulation than glucose-induced cAMP accumulation (Figure 1E,F). This further supports that the two phenomena involve different mechanisms. Since the extent of activation of adenylate cyclase in vitro by GPP(NH)P was not significantly affected by the fil1 mutation, it appears that the Gpa2 protein might be more important for this activation in vitro than the Ras proteins. The observation that the fil1 mutation affects glucose-activation of cAMP synthesis much less than acidification-induced activation makes it remarkable that the mutation was isolated in a screen for glucose-induced loss of stress resistance. It cannot be excluded, however, that the additional presence of the hxk2∆ mutation has contributed significantly to the selective advantage of the original fil1 hxk2∆ mutant strain isolated in the screen. In addition, it might indicate that under the normal conditions of an immediate glucose load, i.e. without pre-addition of a low glucose concentration, the intracellular acidification effect or at least the glucose phosphorylation dependent effect has a significant contribution in stimulation of the cAMP cascade.

The isolation of yeast mutants with a screening protocol based on glucose-induced loss of heat resistance appears to be a promising approach for elucidation of the glucose activation mechanism of the cAMP pathway. The finding that the fil1 mutation is allelic with adenylate cyclase underscores the importance of the cAMP pathway for this
spores, cysts and seeds, which display high stress activity. Well known examples are survival forms like ascospores, cysts and seeds, which display high stress resistance and virtually no metabolic activity. Also in yeast cells there is a clear inverse correlation between stress resistance and growth and metabolic activity. Cells growing on fermentable carbon sources like glucose display the fastest growth rate and the lowest stress resistance while cells growing on nonfermentable carbon sources have a much slower growth rate and a higher stress resistance (Plesset et al., 1987; Schenberg-Frascino and Moustacchi, 1972). Non-growing stationary phase cells and ascospores still display a somewhat higher stress resistance. When glucose is added to slow or non-growing cells they rapidly lose their stress resistance concomitant with the stimulation or induction of growth and fermentation (Van Dijk et al., 1995). These observations suggest that there might be an incompatibility at the molecular level between high stress resistance and high metabolic activity. Hence, it could not be excluded that the aim of the baker’s yeast industry, yeast strains displaying high stress resistance simultaneously with a high metabolic and proliferation activity, was ‘against biological design’ (Attfield, 1997).

Our results with the fil1 mutant demonstrate that stress resistance can be enhanced at least to a certain extent without compromising growth and fermentation rate. The fil1 mutant maintains to a certain extent the high heat resistance of stationary-phase cells during the initiation of growth and fermentation (Figure 1A). The original strain isolated in the screening procedure, fil1 hxk2Δ, even displayed an almost complete maintenance of heat resistance during the initiation of fermentation (Figure 1A). However, that strain was also compromised to a significant extent in the initiation of growth and ethanol production (Figure 4). Whether this indicates an incompatibility of high stress resistance and high metabolic activity or simply an involvement of the adenylate cyclase pathway in the start-up of growth and fermentation is not clear. The final cell density of the fil1 mutant was somewhat elevated and ethanol reutilisation appeared somewhat slower. However, we could not detect any growth defect of the fil1 mutant on ethanol or other nonfermentable carbon sources. Hence, it is unclear whether this could compromise the use of the strain in baker’s yeast applications.

The hxk2Δ Mutation Acts Synergistically with fil1
Although the hxk2Δ mutation has in itself only little effect on glucose-induced loss of heat resistance it causes a strong synergistic effect with the fil1 mutation (Figure 1A). The same is true for glucose-induced mobilisation of trehalose and activation of trehalase. In these cases the hxk2Δ mutation has no effect at all but it causes a dramatic synergistic effect with the fil1 mutation (Figure 1B, C). The best known physiological effect of a hxk2Δ mutation is inactivation of the main glucose repression pathway (Entian, 1980). Interestingly, an opposite effect has been observed previously on heat stress resistance of mutants in the glucose repression pathway by the snf1 mutation that causes inability of derepression (Thompson-Jaeger et al., 1991). Hence, the rapid repression after addition of glucose of the targets of the main glucose repression pathway might be involved to a certain extent in glucose-induced loss of heat resistance. In wild type cells it appears to be overruled by glucose activation of the cAMP pathway since the hxk2Δ mutation had only little effect. However, when the activation of the cAMP pathway is reduced by the fil1 mutation, the effect of the main glucose repression pathway becomes

Enhanced Stress Resistance is Compatible with Normal Growth and Metabolic Activity
In life forms in nature there is a striking inverse relationship between stress resistance and metabolic and proliferating activity. Well known examples are survival forms like spores, cysts and seeds, which display high stress resistance and virtually no metabolic activity. Also in yeast cells there is a clear inverse correlation between stress resistance and growth and metabolic activity. Cells growing on fermentable carbon sources like glucose display the fastest growth rate and the lowest stress resistance while cells growing on nonfermentable carbon sources have a much slower growth rate and a higher stress resistance (Plesset et al., 1987; Schenberg-Frascino and Moustacchi, 1972). Non-growing stationary phase cells and ascospores still display a somewhat higher stress resistance. When glucose is added to slow or non-growing cells they rapidly lose their stress resistance concomitant with the stimulation or induction of growth and fermentation (Van Dijk et al., 1995). These observations suggest that there might be an incompatibility at the molecular level between high stress resistance and high metabolic activity. Hence, it could not be excluded that the aim of the baker’s yeast industry, yeast strains displaying high stress resistance simultaneously with a high metabolic and proliferation activity, was ‘against biological design’ (Attfield, 1997).

Our results with the fil1 mutant demonstrate that stress resistance can be enhanced at least to a certain extent without compromising growth and fermentation rate. The fil1 mutant maintains to a certain extent the high heat resistance of stationary-phase cells during the initiation of growth and fermentation (Figure 1A). The original strain isolated in the screening procedure, fil1 hxk2Δ, even displayed an almost complete maintenance of heat resistance during the initiation of fermentation (Figure 1A). However, that strain was also compromised to a significant extent in the initiation of growth and ethanol production (Figure 4). Whether this indicates an incompatibility of high stress resistance and high metabolic activity or simply an involvement of the adenylate cyclase pathway in the start-up of growth and fermentation is not clear. The final cell density of the fil1 mutant was somewhat elevated and ethanol reutilisation appeared somewhat slower. However, we could not detect any growth defect of the fil1 mutant on ethanol or other nonfermentable carbon sources. Hence, it is unclear whether this could compromise the use of the strain in baker’s yeast applications.
much more important as evidenced by the synergistic effect with hxx2Δ.

Better Maintenance of Stress Resistance During the Initiation of Fermentation
It is well known that industrially produced baker's yeast has an excellent stress resistance. Instant dry yeast can be stored at room temperature for up to 2 years without significant loss of activity. However, as soon as the yeast is used in dough making it initiates fermentation and rapidly loses stress resistance. This is detrimental for the preparation of doughs in which the yeast experiences high stress, such as in freeze doughs (Attfield, 1997). The main challenge to address this problem is to identify mutations that allow a better maintenance of stress resistance during the initiation of fermentation without compromising the start-up of growth and fermentation. In this paper we show that the fil1 mutation, at least in a laboratory strain background, has this effect. Also after growth in pilot scale under similar growth conditions as for industrial baker's yeast the Y55-fil1 strain displayed a better freezing and drying resistance than the Y55 control strain (Figure 5). If a fil1 industrial strain would display the same behaviour as the laboratory fil1 mutant it would present a considerable advantage compared to the industrial yeast strains now in use.

Experimental Procedures

Yeast Strains
S. cerevisiae strains used in this study are shown in Table 2. The Y55-LD1 diploid strain was constructed as follows. The strains Y55-2160 (Matα leu2-3,112 ura3-52 trp1-92 his3 trp1-92 ade8 can1) and Y55-2202 (Matα trp1-92 leu2 his3 trp1-92 can1) kindly provided by Dr. Louis Edward (Oxford, U.K.), were crossed and a prototrophic segregant was isolated by tetrad analysis. The mating type of the two strains of opposite mating type. The resulting strain was called Y55-LD1. The resulting strain was called Y55-LD1. The resulting strain was called Y55-LD1. The fil1 mutation, at least in a laboratory strain background, has this effect. Also after growth in pilot scale under similar growth conditions as for industrial baker's yeast the Y55-fil1 strain displayed a better freezing and drying resistance than the Y55 control strain (Figure 5). If a fil1 industrial strain would display the same behaviour as the laboratory fil1 mutant it would present a considerable advantage compared to the industrial yeast strains now in use.

Plasmid Constructions and Gap Filling Method
The full length *CYR1* gene was isolated from a genomic library clone (Vanhalewyn et al., 1999) and inserted in the vector YCplac33 (Gietz and Sugino, 1988). This plasmid was used for complementation studies with the *fil1* mutants and for the isolation of the *fil1* allele using the gap-filling method (Iwasaki et al., 1991). A Pst-I-BamHI fragment (2794 bp) containing the 3' part of *CYR1*, including the *fil1* mutation, was subcloned in pUC18. The *URA3* marker (isolated from plasmid pLJ242, (Jones and Prakash, 1990) was subcloned in the unique *SnaI* site, located in the 3' noncoding part of *CYR1*. This new construct, MV13, was used to introduce the *fil1* mutation into the SP1 strain. For this purpose pMV13 was digested with *MsoI* and transformed into a ura3 strain. Correct introduction of the *fil1* mutation was each time checked by PCR and sequence analysis. For introduction of the *fil1* mutation into the prototrophic Y55-LD1 strain, the *URA3* marker in the construct was exchanged for the dominant genetin marker and the construct was used to create a diploid, heterozygous *fil1/fil1* strain. After sporulation two haploid *fil1* segregants were crossed to obtain a diploid, homozgyous *fil1/fil1* strain.

EMS Mutagenesis and Selection of Mutants
Ethylmethanesulfonate (EMS) mutagenesis was performed according to standard procedures (Sherman et al., 1986). After EMS treatment, the mutagenised cells were washed, resuspended in YPD (1% yeast extract, 2% bacto peptone, 2% glucose) and grown till stationary phase. An aliquot of 0.5 ml of this culture was transferred into 25 ml fresh YPD and incubated at 30°C for 90 min. The culture was then heated in a water bath at 52°C for 30 min and subsequently further incubated at 30°C. The cells had grown again into stationary phase 0.5 ml of the culture was transferred to a new flask with 25 ml YPD and incubated at 30°C for 90 min. Subsequently 100μl aliquots of the culture were heat shocked at 52°C, 54°C or 56°C. The colonies recovered from the 56°C heat shock included the *fil1* mutant.

Culture and Incubation Conditions
Yeast cells were grown in YPD medium at 30°C to stationary phase in shake flasks in a gyratory incubator. The cells were harvested, washed and resuspended in YM medium. Subsequently they were preincubated for 45 min at 30°C after which glucose was added to a final concentration of 100 mM. Samples were taken just before and at 30, 60 and 90 min after addition of glucose.

Growth Curves, Glucose Consumption and Ethanol Production
Yeast cells were inoculated in YPD medium and growth was followed for 24 hours. Samples were taken every hour to measure the OD600 and to determine glucose and ethanol concentrations in the medium. Glucose levels were determined by the glucose oxidase/peroxidase method. Ethanol levels were determined using alcohol oxidase (kindly provided by Dr. J.P. van Dijken, Delft, the Netherlands) as described by Verduyn et al. (1984). Growth under pilot scale conditions was performed as described previously (Van Dijk et al., 1995).
Heat and Freeze Resistance

For determination of heat and freeze resistance, the cells were washed with ice-cold water and resuspended in ice-cold YPGlycerol. After dilution with the same medium to an optical density of 1 at 600 nm, 0.5 ml of the cell suspension was either incubated at 52°C for 15 or 30 min for determination of heat resistance or stored at -20°C for 5 or 12 days for determination of freeze resistance. Non-treated cells served as a control. After heat shock, the cells were quickly cooled on ice and then diluted 105 and 106 times. A sample (0.1 ml) of each dilution was spread on YPD plates or on YPGlycerol plates in the case of the tps1-4 or tps1-1 hxk2 strains. Survival after heat shock or freeze treatment was estimated by counting the number of colonies after 2 days of growth at 30°C. Survival rates are expressed as percentages of the number of colonies relative to the number of colonies in the non-stressed control samples.

Heat Tests on Plate

Freshly streaked yeast strains were grown overnight on plates containing 2% glucose (master plates). The master plates were rapidly replichaped onto fresh plates preheated at 56°C for at least one hour. Usually three replicates were made which were then incubated for different time periods at 56°C. After the heat shock the plates were incubated for 3 days at 30°C and photographed.

Freeze Resistance Tests in Doughs

Yeast cells were cultivated on molasses, in a fed batch mode in pilot scale conditions as described previously (Van Dijck et al., 1995). They were used to prepare doughs as follows, 160 mg (dry weight equivalent) of yeast were suspended in 15 ml of water containing 27 g/l of NaCl and 4 g/l of (NH4)2SO4 and further mixed with 20 g of flour and 1 g of sucrose. The doughs obtained (6 per strain) were immediately incubated at 30°C for 30 minutes and then stored at -20°C for periods of 1 day up to 2 months. The fermentation capacity after storage at -20°C was measured by incubating the frozen dough at 30°C for 13 minutes, then sealing hermetically the vessel containing the dough and measuring the total quantity of CO2 produced after 4 hours using the fermentometer of Burrows and Harrison (1959; Godon and Losel, 1984). The quantity of CO2 produced under 760 mm of mercury (Hg) is expressed in ml at 20°C.

The residual CO2 production of the dough made with the control strain is used for each storage period as reference (100%). The stability upon freezing is then expressed as the ratio of CO2 released during 2 hours after a certain period of storage at -20°C and the reference value.

Dessication Test

Yeast cells are cultivated on molasses, in fed batch pilot scale conditions as described previously (Van Dijck et al., 1995). Cells are further dried using a process of fluidization type (Clément and Loiez, 1983). An aliquot of non-dried cells is stored to be used as reference. Dried is prepared by mixing 160 mg (dry weight) of yeast cells previously resuspended in 15 ml of water containing NaCl (27g/l) and (NH4)2SO4 (4 g/l) to 20 g of flour and 1 g of sucrose. Dried yeast cells are rehydrated for 15 minutes in water, at 20°C with a water-air interface mixing. Doughs are incubated at 30°C for thirteen minutes then the vessels containing the doughs are hermetically sealed and the carbon dioxide production is measured after 2 and 4 hours using a fermentometer (Burrows and Harrison, 1959).

Western Blot Experiments

Crude membranes were prepared as described for the adenylate cyclase measurements. 2.5 µg of crude membranes were loaded on a 7.5% SDS PAGE gel. After blotting, the nitrocellulose membranes were incubated for 2.5 h in TBST (25 mM Tris/HCl pH 8, 150 mM NaCl, 0.05 vol% Tween 20) containing 5% non-fat dry milk. Then the primary antibody (1:100 dilution in TBST (25 mM Tris/HCl pH 8, 150 mM NaCl, 0.05 vol% Tween 20) containing 5% non-fat dry milk, Tween 20) was added in the case of the tps1-4 or tps1-1 hxk2 strains. Survival after heat shock or freeze treatment was estimated by counting the number of colonies after 2 days of growth at 30°C. Survival rates are expressed as percentages of the number of colonies relative to the number of colonies in the non-stressed control samples.

Biochemical Determinations

Trehalase levels were determined using Humicola grisea trehalase, glucose oxidase and peroxidase (Neves et al., 1999). For determination of the cAMP level the cells were grown on YPGlycerol until exponential phase, harvested and resuspended in 25 mM Mes buffer (pH 6). For determination of glucose-induced cAMP accumulation, they were preincubated for 10 min before addition of 5 mM glucose, followed after 5 min by addition of 100 mM glucose. For determination of acclimation-induced cAMP accumulation the cells were preincubated for 10 min before addition of 2 mM 2,4-dinitrophenol. Extraction of the cells and determination of the cAMP level was performed as described previously (Thevelein et al., 1987). Trehalase activity was determined in crude cell extracts as described previously (Pernambuco et al., 1996).

Adenylate Cyclase Assay

Preparation of crude yeast membranes for the adenylate cyclase assay was performed essentially as described by (Mintzer and Field, 1995). Adenylate cyclase activity was assayed in a reaction mixture containing 20 mM Mes pH 6.2, 0.1 mM MgCl2, 0.1 mM EGTA, 1 mM 2-mercaptoethanol, 0.25 mM IBMX, 0.1 mg/ml BSA, 0.25 mM cAMP, 1 ml [32P]ATP (final spec. act. 30-100 cpm/mol), 20 mM phosphocreatine, 0.25 mM/mg creatine phosphokinase, 0.1 mM DTT, either in the presence of 2.5 mM MnCl2, 2.5 mM MgCl2 or 2.5 mM MgCl2 and 500 µM Gpp(NH)p. The reaction was initiated by the addition of the assay mixture to the membranes (10-80 µg of protein) in a final volume of 100 µl. The tubes were immediately transferred to a water bath and incubated for 20 min. The reaction was stopped by addition of 0.8 ml of ‘stopping solution’ containing 10 mM Tris/HCl, pH 7.5, 0.175 mM cAMP, 5 mM ATP and 0.25% sodium dodecylsulfate. [32P]-cAMP (approximately 20,000 cpm) in 100 µl was added to monitor sample recovery. [32P]-cAMP produced was determined essentially as described by (Solomon et al., 1973).

Acknowledgements

We are grateful to Willy Verheyden and Martine De Jonge for excellent technical assistance. This work was supported by a fellowship from the Institute for Scientific and Technological Research (IWT) to M.V. and by grants from the Flemish Action Programme for Biotechnology (project VLAB/TOP-041), the Flemish Interuniversity Institute of Biotechnology (VIB/PRJ2), the Fund for Scientific Research-Flanders and the Research Fund of the Katholieke Universiteit Leuven (Concerted Research Actions) to J.M.T.

References

Yeast Stress-Resistant Mutant 529
Van Dijck et al.

Ma, P., Gongaives, T., Marevez, A., Loureiro-Dias, M.C., and Thevelein, J.M. 1997. The lag phase rather than the exponential-growth phase on glucose is associated with a higher cAMP level in wild-type and cAPK-attenuated strains of the yeast Saccharomyces cerevisiae. Microbiology 143: 3451-3459.

